INTERNET-DRAFT BobLindell
Expiration: August 1999 ISI
File:draft-lindell-rsvp-scrapi-02.txt

SCRAPI - A Simple “Bare Bones” API for RSVP

12 December 2000

Status of this Memo

This document is an Internet-Draft and is in full conformance with allipro
sions of Section 10 of RFC2026.

Internet-Drafts are arking documents of the Internet Engineeriragi Force
(IETF), its areas, and itsasking groups.Note that other groups may also dis-
tribute working documents as Internet-Dratfts.

Internet-Drafts are draft documentalid for a maximum of six months and
may be updated, replaced, or obsoleted by other documentg &mnan Itis
inappropriate to use Internet- Drafts as reference material or to cite them other
than as “wvork in progress.

The list of current Internet-Drafts can be accessed at
http://lwwwiietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shad@o Directories can be accessed at
http://wwwi.ietf.org/shadev.html.

Abstract

This document describes SCRAPI, a simple “bare bones” API for RIW@
goal of this API is to produce an intacke which simplifies the augmentation of
applications with RSVP support.

Lindell Expiration:August 1999 [Page 1]

INTERNET-DRAFT SCRAPIv.2 February 1998

1. Introduction

This document describes SCRAPI, a simple “Bare Bones” API for RSVPTH4. goal
of this APl is produce an intexte which simplifies the augmentation of applications with
RSVP support.The main features of SCRAPI are:

* Allow the addition of RSVP support to applications by addingnaliiees of
code.

* Provide a portable intesice which can be used withyavendors RAPI imple-
mentation.

* Avoid the introduction of RSVP specific data types and definitions.
* Support IPv4 and IPv6 in a transparent manner

SCRAPI is layered on top of RAPI [2], axigting RSVP API, to prade portability
across endor implementationsCurrently SCRAPI has been tested only with the ISI
implementation of RAPI.

To provide simplicity event upcalls to the application do notig in SCRAPI. Because
of the design choice, it may be ftifilt to use SCRAPI for applications whichgotiate
QoS with the netark. Applicationsrequiring this type of functionality should use the
standard RAPI intesice.

There are three main functions included in this API, one which is used by the sender side,
one to be used at the redag end, and a function to finalize the entire API at the end of
execution. Thissimple API should be easy to insert into natiing applications which
require RSVP support.

Error reporting is handled in twdistinct forms. The first is an agggeted error model

that is unique to SCRAPISCRAPI includes a trialued error model with error states of
“red”, “yellow”, or “green”. This model gres feedback to an application on the status of
reserations at an gen time. Theexact description of each error state will be described
below. Second, it is possible to get an error number and corresponding error description
after executing a SCRAPI sendeecever, or close function. This is similar to theerrno
support in Unix. These error codes are of limited use, sincg tmdy provide feedback

on an immediateailure of a requestThis is most likely due to inalid arguments or
some general system errgk timeout errno is returned if a timexgres on the sender or
recever calls. Atimeout error does not abort the request, it is merely an indication that

Lindell Expiration:August 1999 [Page 2]

INTERNET-DRAFT SCRAPIv.2 February 1998

the timer has>gired. Applicationscan abort a request folling a timeout by closing
the flow.

There is support for applications whichvbamwlling based eent loops using a system
call such aselect Analogous functions to the RAPI intace for supporting this func-
tionality is pravided in SCRAPI.

The remaining functions in the API are utility functions to ease thelafament of an
interface which supports IPv4 and IPvBhese are documented in Appendix These
functions are not viged as part of the SCRAPI APlutrather a collection of useful
address manipulation functions which should bevipiexd in system librariesin the
future, these functions will be remml in favar of system supplied functionalityThe
objectve d these gtensions was to preide enough functionality so that applications
would not need to codexplicitly for either IPv4 or IPv6, or use messy compilation con-
ditionals to deelop an inter&ce to support both addressriilies. Asan exkample, a sin-
gle data type for addresses is\pded that is lage enough to hold addresses from either
addressdmily. In addition, parsing an address string or performing a host name resolu-
tion for both addresamilies is preided.

2. Functional Description

The basic abstraction for the SCRAPI API is avflA flow is defined in terms of three
parameters: théestinationaddress, grotocol number and thesouice address. This
triple is used for the sendeecever, gatus, and close operations in SCRAPI.

Applications which use SCRAPI get a simplied service modee aerage bandwidth
specified by the sender is currently used for thegrated services controlled load [4] or
guaranteed service [3] tek lucket rate (r). The peak tokn hucket rate (p) is set to posi-
tive infinity and tolen hucket depth (b) is set to twice theeeage bandwidth.Minimum
policed unit (m) and maximum paetksize (M) are set to 64 bytes and thgdat MTU of
all IP interfaces on the host.

Sender and reoe¥ side API calls can block, if requested, until a reaéon request has
completed. Thenotion of completion can be &dult to define for multicast flas. We

will define completion in the content of SCRAPI calls to refer to either partial or full
completion of the reseation request.

A sender sourcesAPH messages using the Tspec describedvabdf blocking is

requested with a non-zero timeowlue, the sender blocks until the receipt of a single
RESV eent from ary sender If the specified fio is wnicast, the call blocks until the

Lindell Expiration:August 1999 [Page 3]

INTERNET-DRAFT SCRAPIv.2 February 1998

resenation has completedf the flow is multicast, then at least one regihas a reser
vation in place when the call unblocks.

A recever waits for a RTH event from the sendeend if requested, mals a reseation

in response using the sendefspec and Adspec for guaranteed serviea. guaranteed
service, the data rate (R) is set to the maximum of all senders and the slack term (S) is set
to zero. If blocking is requested, the reeei blocks until the receipt of a CONFIRM

event.

If any RSVP errors occur during a blocking sender or retedPl call, the call will
unblock.

Internal to SCRAPI, there is support for both IPvewrloabels and the Generalized Port
Identifier (GPI) [5]. These are not visible at the APIt is assumed that applications
would continue to use port numbers to specifywficand that SCRAPI internallyould
cornvert these port numbers to either awlbabel or a GPI alue using system supplied
functionality.

A state diagram of the SCRAPI resation API, for a gren data flaw, is hown in Figure

1. Asender call subscripted with zero designates a sender call with the bandwidth set to
zero. Similarly a recever call subscripted with zero designates a nezetall with the
resenation flag set t6-ALSE.

Lindell Expiration:August 1999 [Page 4]

INTERNET-DRAFT SCRAPIv.2 February 1998

D R— +
e | Closed [--------- +
scrapi_sender Fommmmeee- + scrapi_receiver
I I
scrapi_sender | | s crapi_receiver
[— | | + et
| \Y, \% vV Vv |
| e — + B + |
+eee| | | | -+
| Send | | Rcv |
[— | |[<----- + E —— >| [------- +
| + o + | ! + o + |
I I I I I I
	scrapi_receiver(0)			
		s crapi_sender(0)		
I I I I I I				
s crapi_receiver		s crapi_sender [
	oot			
+ o] .				
	SendRcv			
s crapi_sender or +--				
s crapi_receiver	oo +			
I I B I				
+oet				
I				
scrapi_close or scrapi_close scrapi_close or				
scrapi_sender(0)	scrapi_receiver(0)			
I v I				
+ o +				
e >| Closed [<emmmmmmmm e +

Figure 1: SCRAPI API State Diagram

3. TheSimplified Err or Model of SCRAPI

SCRAPI praides a simple error status reporting on a pev flasis. Statusan be in a
“red”, “yellow”, or “green” state.The red state indicates that either thevfldpes not
exist or is currently in an error stat&ellow state indicates that the resation requests
are pending, whereas green indicates that at least one request has completed.

A state diagram of the SCRAPI error model, for @egidata flaw, is hown in Figure 2.
A close operation tas the model from gnstate back to the red stat@his was inten-
tionally omitted to increase the clarity of the diagram.

There are a number of fidulties in praviding a simple, robst, aggrgaed error model

Lindell Expiration:August 1999 [Page 5]

INTERNET-DRAFT SCRAPIv.2 February 1998

based on RSVP signaling informatiohhese issues are highlighted lvelas ather "long
term” or "short term" stability issuedf the model proides "long term" stabilityit will
eventually report the currect statu$here should be no terminal states of the model that
cause the reported status to remairdixithout the ability to transition to awmestate if
conditions changelf the model has "short term" stabiliiy attempts to damp rapid oscil-
lations between states.

There are a f& obstacles to "long term" stability is the current error reporting model for
RSVR Once an error message has been vedeit is not alvays possible to determine

when an error condition has cleardtian application possessed global Whedge about

refresh rates and link reliability assumptions along a path, the solutiold Wwe to vait

until enough time hasxpired to assume that the lack ofyasubsequent error message is

an indication that an error has clearéthfortunately this information about refresh rates

at ary given point in the path is unkmen to applications.The solution in SCRAPI is an
attempt to match error messages with the receipt of other messages that could be used to
indicate the clearing of a\gin error. For example, a CONFIRM message reaei subse-

guent to a RESV ERBR message might indicate that the error condition has cleared.

For unicast, path errors can be paired with the complementary RESV message to transi-
tion the error model between red and gre&vith multicast, an application could be
receving refreshes of aATH ERROR message from one branch of the multicast tree and
RESV messages from another bran&hould the error state of this model be red or
green?

RSVP CONFIRM messages are not d&kd reliably SCRAPI should probably include

a reliability model for confirmations so that the error model does not get stuck in a non-
green state due to the loss of a CONFIRM messages can be implemented by making
repeated requests for a CONFIRM message from the API.

There are also "short term" stability issues thathat been adequately addressed in
SCRAPI. Inthe multicast xample abwe, an goplication could be rec&ng mixture of

path errors and RESV messages for the same fince the error messages will con-
tinue to refresh, this may cause oscillatory edreof the error model Similarly, RESV

errors can be recsd soon after a confirmation due to the gieg rules for RSVPIn

both of these cases, it might be useful to add some delay to state transitions in the error
model.

It is anticipated that impx@ments to the design and implementation of this error model
will occur as we gin a better understanding of of the use of RSVP with applications.

Lindell Expiration:August 1999 [Page 6]

INTERNET-DRAFT SCRAPIv.2 February 1998

D R— +
e | Red |---------- +
scrapi_sender Fomomee- + scrapi_receiver
I I
\ \
[— + [— +
Fomeeen | Yellow |[<-----+ | Yellow |------- +
e — + | | e — + |

| scrapi_receiver(0) | | |

[| s crapi_sender(0)| |

I
I
I
I
I
I
| s crapi_receiver | | s crapi_sender [
I I Hommmeeee + I I
| + e >| Yellow |[<-mmmmmme + |
I + mmmmeeee- + I
I I I
RESV RESV or CONFIRM
| C ONFIRM [
I I I
I \Y I
I + mmmmeeee- + I
o >| Green |<--------momememememee +
[T— >| [<-mmmmmme +
R — + |

I

I

| P ATH RESV |

| E RROR ERROR |
RESV | | C ONFIRM

I \Y \Y I
I
+

Figure 2: SCRAPI Error Model State Diagram

4. A Comparison to RAPI
In this section, a brief comparison of SCRAPI and RAPI areiged in outline form.

» SCRAPI is entirely flav based, there is no concept of a sessi@alls to RAPI
session operations are internally hidden by the seretmver, and close oper
ations.

» The SCRAPI sender command is simplified by not requiring sender templates
or flow specifications. Thesare constructed internally based on a single

Lindell Expiration:August 1999 [Page 7]

INTERNET-DRAFT SCRAPIv.2 February 1998

bandwidth parameter prmled. A RAPI based application has more control
ove specifying the contents of sender templates and $fzecifications.

» The SCRAPI receer command is simplified by not requiring filter orwlo
specifications. Thesare constructed internally based on the sender templates
and flav specifications receed in a FATH message. Imaddition, the receer
command may be called prior to the receipt of BATH messages without
causing an errorA RAPI based application has more contreérospecifying
the contents of filter and fdospecifications, including making a resation for
an amount dferent than the sendersvi@pecification.

A default SCRAPI callback function is defined to process RSVP messHges.
supports automatic responses &' R messages gen prior information from
a recever call. It also maintains state for the simplified SCRAPI error model
described in the pwous section. A RAPI based application can define an
arbitrary callback function which might implement a compor model and
contain functionality to perform QoS getiation.

In the net section, the SCRAPI application programming irgeef is definedln subse-
guent sections, usagexanples are d&fred as templates for programmers who are
attempting to embed SCRAPI calls intasting applications.

5. Application Programming Interface Definition

The section describes the functions of the SCRAPI APincludes the error reporting
capabilities and the asynchronowsrg support.

5.1. Resevation API Description

Lindell Expiration:August 1999 [Page 8]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_sender

Syntax:

Description:

Return \alues:

Also See:

Lindell

intscrapi_sender(

const struct sockaddr *destination,
int protocol,

const struct sockaddr *source,
double bw

unsigned long msecs

);

SCRAPtall for a data sendeiThe destinationaddressprotocolnum-
ber, and thesource address of the data Woare supplied as the first
three aguments. Theource address may be wilditla non-wild port
must be preided. Thebw parameter is thevarage bandwidth of the
flow in bytes/sec. limsecds greater than 0, the call to scrapi_sender
blocks msecamilliseconds to recee a esenation event from at least
one recipient.The call will also unblock prematurely if yamrrors are
detected during this periodlhis function can be called repeatedly by
an application to modify gnparameters associated with this datavflo
(samedestinationaddressprotocol number and source address). A
value of 0 for thebw parameter ungasters a sender for this datawlo

TRUE if successfulFALSE otherwise. Unsuccessfoperations will
set an appropriate error code.

scrapi_errno, scrapi_get_status

Expiration:August 1999 [Page 9]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_recever

Syntax:

Description:

Return \alues:

Also See:

Lindell

intscrapi_receifer(

const struct sockaddr *destination,
int protocol,

const struct sockaddr *source,

int resere,

scrapi_service service,
scrapi_style style,

unsigned long msecs

);

SCRAPIcall for a data receer. The destinationaddress protocol
number and thesource address of the data Woare supplied as the
first three aguments. Thesource address can be setNOLL to
choose ay source. Inaddition, thesouice address can be specified
with a wild port number of 0 to match a source addregadkess of
port number Wild port number requests talrecedence \@&r any
source requestsThe reserve parameter should be set TlRUE or
FALSE to turn on and dfa resenation for that data fl respectiely.
Theserviceparameter specifies the service, currently either Controlled
Load or GuaranteedThe style parameter specifies whether the reser
vation is shared among multiple sendelfsmsecss greater than 0, the
call to scrapi_receer blocks msecamilliseconds to recee a esena-
tion confirmation eent. Thecall will also unblock prematurely if gn
errors are detected during this periothis function can be called
repeatedly by an application to modifyygmarameters associated with
this data flav including remweing a reseration request.

TRUE if successfulFALSE otherwise. Unsuccessfaperations will
set an appropriate error code.

scrapi_errno, scrapi_get_status

Expiration:August 1999 [Page 10]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_close

Syntax:

Description:

Return \alues:

Also See:

Enum Name:

Description:

Enum Name:

Description:

intscrapi_close(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source

);

SCRAPtall to close a fi for sending and recgng. If thedestina-

tion address is set thlULL , dl flows will be closed and the other

parameter alues will be ignored.If the source address is set to
NULL , the close applies to all possible sources.

TRUE if successfulFALSE otherwise. Unsuccessfaperations will
set an appropriate error code.

scrapi_errno, scrapi_get_status

scrapi_sewice
1. scrapi_service cl
2. scrapi_service_gs

Enumeratetypes for specificing the desired servic@urrently Inte-
grated Services Controlled Load and Guaranteed are supported.

scrapi_style
1. scrapi_style shared
2. scrapi_style_distinct

Enumeratedypes for specificing the resation style. Currently
shared (wildcard) and distinct styles are supported.

5.2. Error Handling API Description

The section describes the error reporting functions of the SCRAPI API.

Lindell

Expiration:August 1999 [Page 11]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_get_status
Syntax: scrapi_statuscrapi_get status(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source

);

Description: SCRAPtall to get the status of a Wo If the status is red, either the
flow was neer defined or the flov is aurrently in an error statelf the
souice address is set tNULL , a yellow status indicates that the Wo
is valid but no reseration operation(s) as a sender or regehas com-
pleted successfullyOnce a single reseation completion has been
detected for either a sender or rgegithe flav has a green statust
the source address is not set ULL , the status applies only to the
recever for the specified sourceThus, if an application is both a
sender and recer for a the gren flow, any relevant sender status
information is ignored.

Return \Alues: scrapi_status_remtrapi_status_yeNa or scrapi_status_green.

Function Name: scrapi_errno
Syntax: intscrapi_errno(
const struct sockaddr *destination,

int protocol,
const struct sockaddr *source

);

Description: Seto the errno &lue of the last SCRAPI call for avgn flow. Must
be called with identical guments gien in a preceding SCRAPI func-
tion. Sincefailed SCRAPI functions may not a aeated a flov, or
caused the closure of awilpthe errno may be transitory and should be
obsered immediately after thailure.

Also See: scrapi_perrqgrscrapi_errlist

Lindell Expiration:August 1999 [Page 12]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name:
Syntax:

Description:
Also See:

Function Name:
Syntax:

Description:
Return \alues:
Also See:

Function Name:
Syntax:

Description:

Lindell

scrapi_perror
wid scrapi_perror(

const struct sockaddr *destination,
int protocol,

const struct sockaddr *source,
const char *string

);
SCRAP¢tall to print an error message analogous to the perror() library
call.

scrapi_errno, scrapi_errlist

scrapi_errlist
consthar * scrapi_errlist(
int errno
);
SCRAPtall to get an error message string foragierrno.
Anerror message string.
scrapi_errno, scrapi_perror

scrapi_stderr
wid scrapi_stderr(
FILE *file
);
Sethe file pointer to be used by the SCRAPI library for standard. error

If it is set toNULL, no messages are printed-he deéult value is
stderr.

Expiration:August 1999 [Page 13]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_dehlug

Syntax: wid scrapi_delg(
FILE *file
);
Description: Sethe file pointer to be used by the SCRAPI library forutdgjing

information. Ifit is set toNULL, no messages are printedelug
messages include the logging of all asynchronous RS%fse The
default value isNULL .

Enum Name: scrapi_status
1. scrapi_status_red
2. scrapi_status_yello
3. scrapi_status_green

Description: Enumeratetypes for status condition of aWo The meaning of these
values is described in the scrapi_status() function description.

5.3. Asynchonous Eent Loop API Description
The section describes the asynchronmestfunctions of the SCRAPI API.

Function Name: scrapi_poll_list

Syntax: wid scrapi_poll_list(
fdset *set
);
Description: SCRAPIcall to get all API file descriptors to use in a subsequent
selectcall.

Function Name: scrapi_dispatch

Syntax: intscrapi_dispatch();

Description: SCRAPtall to poll the API for ne events.

Return \alues: TRUE if successfulFALSE if RSVP support is no longevailable.

Lindell Expiration:August 1999 [Page 14]

INTERNET-DRAFT SCRAPIv.2 February 1998

6. Application Code Templates

This section praeides e&kamples, presented as code templates, to aid programmers in aug-
menting netwrking applications with SCRAPI callOne &le contains tavamplex
applications which attempt toai for a reseration to be put in place before sending data
on the netwrk. Theother &kample is a full dupbe multimedia type application which
sends and reosss data without vaiting for completion of the reseation.

6.1. UnicastPeformance Measuement Application

The folloving example vas dewed from a netwrk performance toollt attempts to put
in place a unicast resaton before measuring netvk performance Waiting is accom-
plished using the timeout option in the sender andvercealls.

6.1.1. SendeApplication

This sender application opens a TCP connection to the Veslsestname” on port 1111
and attempts to reseri000 bytes/sec ofvarage bandwidth.After waiting at most 10

seconds for a reseation to be put in place, this application streams data to theeetei

measure netark performance and then closes the connection.

Lindell Expiration:August 1999 [Page 15]

INTERNET-DRAFT SCRAPIv.2

#include <scrapi.h>
#define SAP(x) ((struct sockaddr *) (x))

void

February 1998

main(int argc, char *argv[])

{

Lindell

int fd,len;

int timeout = 10000; /* wait for at most 10 seconds */
double bw = 1000; [* Average bandwidth 1Kbytes/sec */
struct SOCKADDR destination,source;

scrapi_status status;

char *hostname = "receive-hostname";
unsigned short port = 1111;

/* translate host name or address */
if (Iscrapi_sockaddr_parse(SAP(&destination),hostname,
htons(port))) {

fprintf(stderr,"Could not parse host address");
exit(1);

}

/* open, bind, and connect */

/* fd = socket(...); */

len = sizeof(source);

if (getsockname(fd,SAP(&source),&len) == -1) {
perror("getsockname™);
exit(1);

}

/* make an RSVP based reservation */
if (Iscrapi_sender(SAP(&destination),IPPROTO_TCP,SAP(&source),
bw,0,timeout))
scrapi_perror(SAP(&destination),IPPROTO_TCP,SAP(&source),
"RSVP unable to reserve bandwidth");
status = scrapi_get_status(SAP(&destination),IPPROTO_TCP,NULL);

/* run test */
if (status == scrapi_status_green) {
status = scrapi_get_status(SAP(&destination),IPPROTO_TCP,
NULL);
if (status != scrapi_status_green)
fprintf(stderr,
"RSVP reservation lost during test!");

}
scrapi_close(NULL,0,0);

Expiration:August 1999 [Page 16]

INTERNET-DRAFT SCRAPIv.2 February 1998

6.1.2. Receaier Application

This recever application accepts a TCP connection and attempts te maksenation.
After waiting at most 10 seconds for a resgion to be put in place, this application con-
sumes data from the sender to measurear&tperformance and then closes the connec-
tion.

#include <scrapi.h>

#define SAP(x) ((struct sockaddr *) (x))
void
main(int argc, char *argv([])
{
int fd,len,timeout = 10000; /* wait for at most 10 seconds */

struct SOCKADDR destination;

/* open, bind, and listen for connection */

/* fd = accept(...); */

len = sizeof(destination);

if (getsockname(fd,SAP(&destination),&len) == -1) {
perror("getsockname™);
exit(1);

}

/* make an RSVP based reservation */
if (Iscrapi_receiver(SAP(&destination),IPPROTO_TCP,NULL,1,
scrapi_service_cl,scrapi_style_distinct,timeout))
scrapi_perror(SAP(&destination),IPPROTO_TCP,NULL,
"RSVP unable to reserve bandwidth");

/* run test */
scrapi_close(NULL,0,0);

6.2. Multicast Multimedia A pplication

This example highlights the inclusion of the SCRAPI API into a Tcl/Vkng loop of a
multimedia application.This is a full duplg application that is sending and redeg
data on the same addresghis application does notait for completion status from the
resenation calls.

Lindell Expiration:August 1999 [Page 17]

INTERNET-DRAFT SCRAPIv.2 February 1998

#include <tcl.h>
#include <tk.h>
#include <scrapi.h>

#define SAP(x) ((struct sockaddr *) (x))
void

callback(ClientData data, int mask)

{

if (Iscrapi_dispatch())
Tk_DeleteFileHandler(data);

}
void
main(int argc, char *argv[])
{
inti,fd,len;
fd_set set;
struct SOCKADDR destination,source;
double bw = 1000; /* Average bandwidth 1Kbytes/sec */

char *hostname = "receive-hostname";
unsigned short port = 1111;

/* translate host name or address */
if (Iscrapi_sockaddr_parse(SAP(&destination),hostname,
htons(port))) {

fprintf(stderr,"Could not parse host address");
exit(1);

}

len = sizeof(source);

if (getsockname(fd,SAP(&source),&len) == -1) {
perror("getsockname");
exit(1);

}

/* make an RSVP based reservation */
if (Iscrapi_sender(SAP(&destination),IPPROTO_UDP,SAP(&source),
bw,0,0))
scrapi_perror(SAP(&destination),IPPROTO_UDP,SAP(&source),
"RSVP unable to reserve bandwidth");
if (Iscrapi_receiver(SAP(&destination),IPPROTO_UDP,SAP(&source),
1,scrapi_service_cl,scrapi_style_distinct,0))
scrapi_perror(SAP(&destination),IPPROTO_UDP,SAP(&source),
"RSVP unable to reserve bandwidth™);
scrapi_poll_list(&set);
for (i = 0;i < FD_SETSIZE; i++) {
if ({FD_ISSET(i,&set))
continue;
Tk_CreateFileHandler((ClientData) i, TK_READABLE,
callback,(ClientData) i);

}

/* send data */

Lindell Expiration:August 1999 [Page 18]

INTERNET-DRAFT SCRAPIv.2 February 1998

scrapi_close(NULL,0,0);

7. Conclusion

The SCRAPI intedce proides a simple method to add RSVP support toynmatwork
applications. Itsupports both IPv4 and IPv6 and attempts to simplify usedajeed
code to support both addressrilies. Codingexamples are praded to gve alditional
guidance on the usage of this API.

8. SecurityConsiderations

Security considerations are not discussed in this memo.

9. Acknowledgements

The author wuld like to thank Stee Berson for helping to define this APIwould also
like o thank Bob Braden for his help in immping the definition of the API and corre-
sponding documentation.

10. Refeences

[1] Braden,R., Ed., et. al.Resouce Reservation Btocol (RSVP) - &sion 1 Func-
tional SpecificationRFC 2205, September 1997.

[2] Braden,R., Hofman, D.,RAPI -- An RSVP Application &gramming Interface &f-
sion 5 Work In Progress, Nember 1997.

[3] Shenler, S, Partridge, C., Guerin, RSpecification of Guanteed Quality of Ser
vice, RFC 2212, September 1997.

[4] Wroclawski, J.,Specification of the Comtiled Load Quality of Servig&RFC 2211,
September 1997.

[5] Berger, L., O'Malley, T., RSVP Extensions for IPSEC Data FlovwiFC 2207,
September 1997.

Lindell Expiration:August 1999 [Page 19]

INTERNET-DRAFT SCRAPIv.2 February 1998

11. Author’'s Address

Bob Lindell

USC Information Sciences Institute
4676 Admiralty Vay

Marina del Rg, CA 90292

12. Appendix 1: Address Manipulation API Description

These are utility functions to ease ther@l@oment of an intedfice which supports IPv4
and IPv6. These are not weed as part of the SCRAPI APlutorather a collection of
useful address manipulation functions which should beiged in system librariesin
the future, these functions will be rewed in favar of system supplied functionality

Macro Name: SOCKADDR

Description: Astruct sockaddr data type that iggerenough for both IPv4 and IPv6
addresses.

Function Name: scrapi_sockaddr_multicast
Syntax: intscrapi_sockaddr_multicast(

const struct sockaddr *address
);
Description: Determind an address is multicast or unicast.
Return \alues: TRUE if multicast,FALSE otherwise.

Function Name: scrapi_sockaddr_parse
Syntax: intscrapi_sockaddr_parse(
struct sockaddr *address

const char *name,
unsigned short port

)i
Description: Perforna host name lookup or parse an address and initialize a struct
sockaddr structure.

Return \alues: TRUE if parsed FALSE otherwise.

Lindell Expiration:August 1999 [Page 20]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name:
Syntax:

Description:
Return \alues:

Function Name:
Syntax:

Description:

Return \alues:

Function Name:
Syntax:

Description:

Return \alues:

Function Name:
Syntax:

Description:
Return \alues:

Lindell

scrapi_sockaddr_print
consthar * scrapi_sockaddr_print(

const struct sockaddr *address
);
Prettyrint an address.
Avalid string if printable NULL otherwise.

scrapi_sockaddr_get_addr
intscrapi_sockaddr_get _addr(

const struct sockaddr *address,
char *addr

);

Storghe address field of the sockaddr structure to aorktwrder
binary representation of an address which starts at the memory loca-
tion specified.

TRUE if successfulFALSE otherwise.

scrapi_sockaddr_set_addr
intscrapi_sockaddr_set_addr(

struct sockaddr *address,
char *addr

);

Loadhe address field of the sockaddr structure from aarktarder
binary representation of an address which starts at the memory loca-
tion specified.

TRUE if successfulFALSE otherwise.

scrapi_sockaddr_get_port
unsignedhort scrapi_sockaddr_get_port(

const struct sockaddr *address
);
Gethe port number
Theport number if successful, 0 otherwise.

Expiration:August 1999 [Page 21]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_sockaddr_set_port
Syntax: intscrapi_sockaddr_set_port(

struct sockaddr *address,
unsigned short port

);
Description: Sethe port number
Return \alues: TRUE if successfulFALSE otherwise.

Function Name: scrapi_sockaddr_any

Syntax: intscrapi_sockaddr_g(
struct sockaddr *address,
int family
);
Description: Initializea gruct sockaddr to the wildcard address and port number for

the given address &mily.
Return \alues: TRUE if successfulFALSE otherwise.

Function Name: scrapi_sockaddr_length

Syntax: intscrapi_sockaddr_length(
struct sockaddr *address
);
Description: Returithe length of a struct sockaddr for theegi address amily.

Return \alues: Thdength if successful, O otherwise.

Lindell Expiration:August 1999 [Page 22]

INTERNET-DRAFT SCRAPIv.2 February 1998

Lindell

Table of Contents

1. Introduction .

2. Functional Descrlptlon Co

3. The Simplified Error Model of SCRAPI

4. A Comparison to RAPI :

5. Application Programming Intexte Deflnltlon
5.1. Reseration API Description .

5.2. Error Handling API Description. . .
5.3. Asynchronous Ent Loop API Descrlptlon
6. Application Code @mplates

6.1. Unicast Performance Measurement Appllcatlon .

6.1.1. Sender Application

6.1.2. Recefer Application .
6.2. Multicast Multimedia Appllcatlon
7. Conclusion . S
8. Security ConS|derat|ons

9. Acknavledgements . .

10. References . .

11. Authors Address

12. Appendix 1: Address Manlpulatlon API Descrlptlon .

Expiration:August 1999

B@em@elﬁlﬁalﬁbﬂhﬁiﬂmm\‘mwm

[Page 23]

