
INTERNET-DRAFT BobLindell
Expiration: August 1999 ISI
File:draft-lindell-rsvp-scrapi-02.txt

SCRAPI - A Simple “Bare Bones” API for RSVP

12 December 2000

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provi-
sions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups.Note that other groups may also dis-
tribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet- Drafts as reference material or to cite them other
than as “work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This document describes SCRAPI, a simple “bare bones” API for RSVP. The
goal of this API is to produce an interface which simplifies the augmentation of
applications with RSVP support.

Lindell Expiration:August 1999 [Page 1]

INTERNET-DRAFT SCRAPIv.2 February 1998

1. Intr oduction

This document describes SCRAPI, a simple “Bare Bones” API for RSVP [1].The goal
of this API is produce an interface which simplifies the augmentation of applications with
RSVP support.The main features of SCRAPI are:

• Allow the addition of RSVP support to applications by adding a few lines of
code.

• Provide a portable interface which can be used with any vendor’s RAPI imple-
mentation.

• Avoid the introduction of RSVP specific data types and definitions.

• Support IPv4 and IPv6 in a transparent manner.

SCRAPI is layered on top of RAPI [2], an existing RSVP API, to provide portability
across vendor implementations.Currently, SCRAPI has been tested only with the ISI
implementation of RAPI.

To provide simplicity, event upcalls to the application do not exist in SCRAPI. Because
of the design choice, it may be difficult to use SCRAPI for applications which negotiate
QoS with the network. Applicationsrequiring this type of functionality should use the
standard RAPI interface.

There are three main functions included in this API, one which is used by the sender side,
one to be used at the receiving end, and a function to finalize the entire API at the end of
execution. Thissimple API should be easy to insert into networking applications which
require RSVP support.

Error reporting is handled in two distinct forms. The first is an aggregated error model
that is unique to SCRAPI.SCRAPI includes a tri-valued error model with error states of
“red”, “yellow”, or “green”. This model gives feedback to an application on the status of
reservations at an given time. Theexact description of each error state will be described
below. Second, it is possible to get an error number and corresponding error description
after executing a SCRAPI sender, receiver, or close function.This is similar to theerrno
support in Unix. These error codes are of limited use, since they only provide feedback
on an immediate failure of a request.This is most likely due to invalid arguments or
some general system error. A timeout errno is returned if a timer expires on the sender or
receiver calls. A timeout error does not abort the request, it is merely an indication that

Lindell Expiration:August 1999 [Page 2]

INTERNET-DRAFT SCRAPIv.2 February 1998

the timer has expired. Applicationscan abort a request following a timeout by closing
the flow.

There is support for applications which have polling based event loops using a system
call such asselect. Analogous functions to the RAPI interface for supporting this func-
tionality is provided in SCRAPI.

The remaining functions in the API are utility functions to ease the development of an
interface which supports IPv4 and IPv6.These are documented in Appendix 1.These
functions are not viewed as part of the SCRAPI API, but rather a collection of useful
address manipulation functions which should be provided in system libraries.In the
future, these functions will be removed in favor of system supplied functionality. The
objective of these extensions was to provide enough functionality so that applications
would not need to code explicitly for either IPv4 or IPv6, or use messy compilation con-
ditionals to develop an interface to support both address families. Asan example, a sin-
gle data type for addresses is provided that is large enough to hold addresses from either
address family. In addition, parsing an address string or performing a host name resolu-
tion for both address families is provided.

2. FunctionalDescription

The basic abstraction for the SCRAPI API is a flow. A flow is defined in terms of three
parameters: thedestinationaddress, aprotocol number, and thesource address. This
triple is used for the sender, receiver, status, and close operations in SCRAPI.

Applications which use SCRAPI get a simplied service model.The average bandwidth
specified by the sender is currently used for the integrated services controlled load [4] or
guaranteed service [3] token bucket rate (r).The peak token bucket rate (p) is set to posi-
tive infinity and token bucket depth (b) is set to twice the average bandwidth.Minimum
policed unit (m) and maximum packet size (M) are set to 64 bytes and the largest MTU of
all IP interfaces on the host.

Sender and receiver side API calls can block, if requested, until a reservation request has
completed. Thenotion of completion can be difficult to define for multicast flows. We
will define completion in the content of SCRAPI calls to refer to either partial or full
completion of the reservation request.

A sender sources PATH messages using the Tspec described above. If blocking is
requested with a non-zero timeout value, the sender blocks until the receipt of a single
RESV event from any sender. If the specified flow is unicast, the call blocks until the

Lindell Expiration:August 1999 [Page 3]

INTERNET-DRAFT SCRAPIv.2 February 1998

reservation has completed.If the flow is multicast, then at least one receiver has a reser-
vation in place when the call unblocks.

A receiver waits for a PATH event from the sender, and if requested, makes a reservation
in response using the sender’s Tspec and Adspec for guaranteed service.For guaranteed
service, the data rate (R) is set to the maximum of all senders and the slack term (S) is set
to zero. If blocking is requested, the receiver blocks until the receipt of a CONFIRM
ev ent.

If any RSVP errors occur during a blocking sender or receiver API call, the call will
unblock.

Internal to SCRAPI, there is support for both IPv6 Flow Labels and the Generalized Port
Identifier (GPI) [5]. These are not visible at the API.It is assumed that applications
would continue to use port numbers to specify flows and that SCRAPI internally would
convert these port numbers to either a Flow Label or a GPI value using system supplied
functionality.

A state diagram of the SCRAPI reservation API, for a given data flow, is shown in Figure
1. A sender call subscripted with zero designates a sender call with the bandwidth set to
zero. Similarly, a receiver call subscripted with zero designates a receiver call with the
reservation flag set toFALSE.

Lindell Expiration:August 1999 [Page 4]

INTERNET-DRAFT SCRAPIv.2 February 1998

+---------+
+----------| Closed |----------+

scrapi_sender +---------+ scrapi_receiver
| |

scrapi_sender | | s crapi_receiver
+----+ | | + ----+
| V V V V |
| + ---------+ +---------+ |
+---| | | | ---+

| S end | | R cv |
+-------| |<-----+ +----->| |-------+
+ ---------+		+ ---------+		
	scrapi_receiver(0)			
		s crapi_sender(0)		
s crapi_receiver		s crapi_sender		
	+---------+			
+ --------->		<---------+		
	SendRcv			
s crapi_sender or +---				
s crapi_receiver	+---------+			
	ˆ			
+ ----+				

scrapi_close or scrapi_close scrapi_close or
scrapi_sender(0) | scrapi_receiver(0)

| V |
| + ---------+ |
+---------------------->| Closed |<----------------------+

+---------+

Figure 1: SCRAPI API State Diagram

3. TheSimplified Err or Model of SCRAPI

SCRAPI provides a simple error status reporting on a per flow basis. Statuscan be in a
“red”, “yellow”, or “green” state.The red state indicates that either the flow does not
exist or is currently in an error state.Yellow state indicates that the reservation requests
are pending, whereas green indicates that at least one request has completed.

A state diagram of the SCRAPI error model, for a given data flow, is shown in Figure 2.
A close operation takes the model from any state back to the red state.This was inten-
tionally omitted to increase the clarity of the diagram.

There are a number of difficulties in providing a simple, robust, aggregated error model

Lindell Expiration:August 1999 [Page 5]

INTERNET-DRAFT SCRAPIv.2 February 1998

based on RSVP signaling information.These issues are highlighted below as either "long
term" or "short term" stability issues.If the model provides "long term" stability, it will
ev entually report the currect status.There should be no terminal states of the model that
cause the reported status to remain fixed without the ability to transition to a new state if
conditions change.If the model has "short term" stability, it attempts to damp rapid oscil-
lations between states.

There are a few obstacles to "long term" stability is the current error reporting model for
RSVP. Once an error message has been received, it is not always possible to determine
when an error condition has cleared.If an application possessed global knowledge about
refresh rates and link reliability assumptions along a path, the solution would be to wait
until enough time has expired to assume that the lack of any subsequent error message is
an indication that an error has cleared.Unfortunately, this information about refresh rates
at any giv en point in the path is unknown to applications.The solution in SCRAPI is an
attempt to match error messages with the receipt of other messages that could be used to
indicate the clearing of a given error. For example, a CONFIRM message received subse-
quent to a RESV ERROR message might indicate that the error condition has cleared.

For unicast, path errors can be paired with the complementary RESV message to transi-
tion the error model between red and green.With multicast, an application could be
receiving refreshes of a PATH ERROR message from one branch of the multicast tree and
RESV messages from another branch.Should the error state of this model be red or
green?

RSVP CONFIRM messages are not delivered reliably. SCRAPI should probably include
a reliability model for confirmations so that the error model does not get stuck in a non-
green state due to the loss of a CONFIRM message.This can be implemented by making
repeated requests for a CONFIRM message from the API.

There are also "short term" stability issues that have not been adequately addressed in
SCRAPI. Inthe multicast example above, an application could be receiving mixture of
path errors and RESV messages for the same flow. Since the error messages will con-
tinue to refresh, this may cause oscillatory behavior of the error model.Similarly, RESV
errors can be received soon after a confirmation due to the merging rules for RSVP. In
both of these cases, it might be useful to add some delay to state transitions in the error
model.

It is anticipated that improvements to the design and implementation of this error model
will occur as we gain a better understanding of of the use of RSVP with applications.

Lindell Expiration:August 1999 [Page 6]

INTERNET-DRAFT SCRAPIv.2 February 1998

+---------+
+----------| Red |----------+

scrapi_sender +---------+ scrapi_receiver
| |
V V

+---------+ +---------+
+-------| Yellow |<-----+ +----->| Yellow |-------+
+ ---------+		+ ---------+		
	scrapi_receiver(0)			
		s crapi_sender(0)		
s crapi_receiver		s crapi_sender		
	+---------+			
+ --------->	Yellow	<---------+		
+ ---------+				

RESV RESV or CONFIRM
| C ONFIRM |
| | |
| V |
| + ---------+ |
+---------------------->| Green |<----------------------+

+--------->| |<---------+
| + ---------+ |
| | | |
| P ATH RESV |
| E RROR ERROR |

RESV | | C ONFIRM
| V V |
| + ---------+ +---------+ |
+---| Red | | Red |---+

+---------+ +---------+

Figure 2: SCRAPI Error Model State Diagram

4. A Comparison to RAPI

In this section, a brief comparison of SCRAPI and RAPI are provided in outline form.

• SCRAPI is entirely flow based, there is no concept of a session.Calls to RAPI
session operations are internally hidden by the sender, receiver, and close oper-
ations.

• The SCRAPI sender command is simplified by not requiring sender templates
or flow specifications. Theseare constructed internally based on a single

Lindell Expiration:August 1999 [Page 7]

INTERNET-DRAFT SCRAPIv.2 February 1998

bandwidth parameter provided. A RAPI based application has more control
over specifying the contents of sender templates and flow specifications.

• The SCRAPI receiver command is simplified by not requiring filter or flow
specifications. Theseare constructed internally based on the sender templates
and flow specifications received in a PATH message. Inaddition, the receiver
command may be called prior to the receipt of any PATH messages without
causing an error. A RAPI based application has more control over specifying
the contents of filter and flow specifications, including making a reservation for
an amount different than the senders flow specification.

• A default SCRAPI callback function is defined to process RSVP messages.It
supports automatic responses to PATH messages given prior information from
a receiver call. It also maintains state for the simplified SCRAPI error model
described in the previous section.A RAPI based application can define an
arbitrary callback function which might implement a complex error model and
contain functionality to perform QoS negotiation.

In the next section, the SCRAPI application programming interface is defined.In subse-
quent sections, usage examples are offered as templates for programmers who are
attempting to embed SCRAPI calls into existing applications.

5. Application Programming Interface Definition

The section describes the functions of the SCRAPI API.It includes the error reporting
capabilities and the asynchronous event support.

5.1. Reservation API Description

Lindell Expiration:August 1999 [Page 8]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_sender

Syntax: intscrapi_sender(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source,
double bw,
unsigned long msecs

);

Description: SCRAPIcall for a data sender. Thedestinationaddress,protocolnum-
ber, and thesource address of the data flow are supplied as the first
three arguments. Thesource address may be wild, but a non-wild port
must be provided. Thebw parameter is the average bandwidth of the
flow in bytes/sec. Ifmsecsis greater than 0, the call to scrapi_sender
blocksmsecsmilliseconds to receive a reservation event from at least
one recipient.The call will also unblock prematurely if any errors are
detected during this period.This function can be called repeatedly by
an application to modify any parameters associated with this data flow
(samedestinationaddress,protocol number, and source address). A
value of 0 for thebwparameter unregisters a sender for this data flow.

Return Values: TRUE if successful,FALSE otherwise. Unsuccessfuloperations will
set an appropriate error code.

Also See: scrapi_errno, scrapi_get_status

Lindell Expiration:August 1999 [Page 9]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_receiver

Syntax: intscrapi_receiver(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source,
int reserve,
scrapi_service service,
scrapi_style style,
unsigned long msecs

);

Description: SCRAPIcall for a data receiver. The destinationaddress,protocol
number, and thesource address of the data flow are supplied as the
first three arguments. Thesource address can be set toNULL to
choose any source. Inaddition, thesource address can be specified
with a wild port number of 0 to match a source address regardless of
port number. Wild port number requests take precedence over any
source requests.The reserveparameter should be set toTRUE or
FALSE to turn on and off a reservation for that data flow respectively.
Theserviceparameter specifies the service, currently either Controlled
Load or Guaranteed.The styleparameter specifies whether the reser-
vation is shared among multiple senders.If msecsis greater than 0, the
call to scrapi_receiver blocks msecsmilliseconds to receive a reserva-
tion confirmation event. Thecall will also unblock prematurely if any
errors are detected during this period.This function can be called
repeatedly by an application to modify any parameters associated with
this data flow including removing a reservation request.

Return Values: TRUE if successful,FALSE otherwise. Unsuccessfuloperations will
set an appropriate error code.

Also See: scrapi_errno, scrapi_get_status

Lindell Expiration:August 1999 [Page 10]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_close

Syntax: intscrapi_close(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source

);

Description: SCRAPIcall to close a flow for sending and receiving. If thedestina-
tion address is set toNULL , all flows will be closed and the other
parameter values will be ignored.If the source address is set to
NULL , the close applies to all possible sources.

Return Values: TRUE if successful,FALSE otherwise. Unsuccessfuloperations will
set an appropriate error code.

Also See: scrapi_errno, scrapi_get_status

Enum Name: scrapi_service

1. scrapi_service_cl

2. scrapi_service_gs

Description: Enumeratedtypes for specificing the desired service.Currently, Inte-
grated Services Controlled Load and Guaranteed are supported.

Enum Name: scrapi_style

1. scrapi_style_shared

2. scrapi_style_distinct

Description: Enumeratedtypes for specificing the reservation style. Currently,
shared (wildcard) and distinct styles are supported.

5.2. Error Handling API Description

The section describes the error reporting functions of the SCRAPI API.

Lindell Expiration:August 1999 [Page 11]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_get_status

Syntax: scrapi_statusscrapi_get_status(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source

);

Description: SCRAPIcall to get the status of a flow. If the status is red, either the
flow was never defined or the flow is currently in an error state.If the
source address is set toNULL , a yellow status indicates that the flow
is valid but no reservation operation(s) as a sender or receiver has com-
pleted successfully. Once a single reservation completion has been
detected for either a sender or receiver, the flow has a green status.If
the source address is not set toNULL , the status applies only to the
receiver for the specified source.Thus, if an application is both a
sender and receiver for a the given flow, any relevant sender status
information is ignored.

Return Values: scrapi_status_red,scrapi_status_yellow, or scrapi_status_green.

Function Name: scrapi_errno

Syntax: intscrapi_errno(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source

);

Description: Setto the errno value of the last SCRAPI call for a given flow. Must
be called with identical arguments given in a preceding SCRAPI func-
tion. Sincefailed SCRAPI functions may not have created a flow, or
caused the closure of a flow, the errno may be transitory and should be
observed immediately after the failure.

Also See: scrapi_perror, scrapi_errlist

Lindell Expiration:August 1999 [Page 12]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_perror

Syntax: void scrapi_perror(

const struct sockaddr *destination,
int protocol,
const struct sockaddr *source,
const char *string

);

Description: SCRAPIcall to print an error message analogous to the perror() library
call.

Also See: scrapi_errno, scrapi_errlist

Function Name: scrapi_errlist

Syntax: constchar * scrapi_errlist(

int errno

);

Description: SCRAPIcall to get an error message string for a given errno.

Return Values: Anerror message string.

Also See: scrapi_errno, scrapi_perror

Function Name: scrapi_stderr

Syntax: void scrapi_stderr(

FILE *file

);

Description: Setthe file pointer to be used by the SCRAPI library for standard error.
If it is set toNULL , no messages are printed.The default value is
stderr.

Lindell Expiration:August 1999 [Page 13]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_debug

Syntax: void scrapi_debug(

FILE *file

);

Description: Setthe file pointer to be used by the SCRAPI library for debugging
information. If it is set toNULL , no messages are printed.Debug
messages include the logging of all asynchronous RSVP events. The
default value isNULL .

Enum Name: scrapi_status

1. scrapi_status_red

2. scrapi_status_yellow

3. scrapi_status_green

Description: Enumeratedtypes for status condition of a flow. The meaning of these
values is described in the scrapi_status() function description.

5.3. Asynchronous Event Loop API Description

The section describes the asynchronous event functions of the SCRAPI API.

Function Name: scrapi_poll_list

Syntax: void scrapi_poll_list(

fdset *set

);

Description: SCRAPIcall to get all API file descriptors to use in a subsequent
selectcall.

Function Name: scrapi_dispatch

Syntax: intscrapi_dispatch();

Description: SCRAPIcall to poll the API for new events.

Return Values: TRUE if successful,FALSE if RSVP support is no longer available.

Lindell Expiration:August 1999 [Page 14]

INTERNET-DRAFT SCRAPIv.2 February 1998

6. Application Code Templates

This section provides examples, presented as code templates, to aid programmers in aug-
menting networking applications with SCRAPI calls.One example contains two simplex
applications which attempt to wait for a reservation to be put in place before sending data
on the network. Theother example is a full duplex multimedia type application which
sends and receives data without waiting for completion of the reservation.

6.1. UnicastPerf ormance Measurement Application

The following example was derived from a network performance tool.It attempts to put
in place a unicast reservation before measuring network performance.Waiting is accom-
plished using the timeout option in the sender and receiver calls.

6.1.1. SenderApplication

This sender application opens a TCP connection to the “receive-hostname” on port 1111
and attempts to reserve 1000 bytes/sec of average bandwidth.After waiting at most 10
seconds for a reservation to be put in place, this application streams data to the receiver to
measure network performance and then closes the connection.

Lindell Expiration:August 1999 [Page 15]

INTERNET-DRAFT SCRAPIv.2 February 1998

#include <scrapi.h>

#define SAP(x) ((struct sockaddr *) (x))

void
main(int argc, char *argv[])
{

int fd,len;
int timeout = 10000; /* wait for at most 10 seconds */
double bw = 1000; /* Average bandwidth 1Kbytes/sec */
struct SOCKADDR destination,source;
scrapi_status status;

char *hostname = "receive-hostname";
unsigned short port = 1111;

/* translate host name or address */
if (!scrapi_sockaddr_parse(SAP(&destination),hostname,

htons(port))) {
fprintf(stderr,"Could not parse host address");
exit(1);

}
/* open, bind, and connect */
/* fd = socket(...); */
len = sizeof(source);
if (getsockname(fd,SAP(&source),&len) == -1) {

perror("getsockname");
exit(1);

}

/* make an RSVP based reservation */
if (!scrapi_sender(SAP(&destination),IPPROTO_TCP,SAP(&source),

bw,0,timeout))
scrapi_perror(SAP(&destination),IPPROTO_TCP,SAP(&source),

"RSVP unable to reserve bandwidth");
status = scrapi_get_status(SAP(&destination),IPPROTO_TCP,NULL);

/* run test */
if (status == scrapi_status_green) {

status = scrapi_get_status(SAP(&destination),IPPROTO_TCP,
NULL);

if (status != scrapi_status_green)
fprintf(stderr,

"RSVP reservation lost during test!");
}
scrapi_close(NULL,0,0);

}

Lindell Expiration:August 1999 [Page 16]

INTERNET-DRAFT SCRAPIv.2 February 1998

6.1.2. Receiver A pplication

This receiver application accepts a TCP connection and attempts to make a reservation.
After waiting at most 10 seconds for a reservation to be put in place, this application con-
sumes data from the sender to measure network performance and then closes the connec-
tion.

#include <scrapi.h>

#define SAP(x) ((struct sockaddr *) (x))

void
main(int argc, char *argv[])
{

int fd,len,timeout = 10000; /* wait for at most 10 seconds */
struct SOCKADDR destination;

/* open, bind, and listen for connection */
/* fd = accept(...); */
len = sizeof(destination);
if (getsockname(fd,SAP(&destination),&len) == -1) {

perror("getsockname");
exit(1);

}

/* make an RSVP based reservation */
if (!scrapi_receiver(SAP(&destination),IPPROTO_TCP,NULL,1,

scrapi_service_cl,scrapi_style_distinct,timeout))
scrapi_perror(SAP(&destination),IPPROTO_TCP,NULL,

"RSVP unable to reserve bandwidth");

/* run test */
scrapi_close(NULL,0,0);

}

6.2. Multicast Multimedia A pplication

This example highlights the inclusion of the SCRAPI API into a Tcl/Tk event loop of a
multimedia application.This is a full duplex application that is sending and receiving
data on the same address.This application does not wait for completion status from the
reservation calls.

Lindell Expiration:August 1999 [Page 17]

INTERNET-DRAFT SCRAPIv.2 February 1998

#include <tcl.h>
#include <tk.h>
#include <scrapi.h>

#define SAP(x) ((struct sockaddr *) (x))

void
callback(ClientData data, int mask)
{

if (!scrapi_dispatch())
Tk_DeleteFileHandler(data);

}

void
main(int argc, char *argv[])
{

int i,fd,len;
fd_set set;
struct SOCKADDR destination,source;
double bw = 1000; /* Average bandwidth 1Kbytes/sec */
char *hostname = "receive-hostname";
unsigned short port = 1111;

/* translate host name or address */
if (!scrapi_sockaddr_parse(SAP(&destination),hostname,

htons(port))) {
fprintf(stderr,"Could not parse host address");
exit(1);

}
len = sizeof(source);
if (getsockname(fd,SAP(&source),&len) == -1) {

perror("getsockname");
exit(1);

}

/* make an RSVP based reservation */
if (!scrapi_sender(SAP(&destination),IPPROTO_UDP,SAP(&source),

bw,0,0))
scrapi_perror(SAP(&destination),IPPROTO_UDP,SAP(&source),

"RSVP unable to reserve bandwidth");
if (!scrapi_receiver(SAP(&destination),IPPROTO_UDP,SAP(&source),

1,scrapi_service_cl,scrapi_style_distinct,0))
scrapi_perror(SAP(&destination),IPPROTO_UDP,SAP(&source),

"RSVP unable to reserve bandwidth");
scrapi_poll_list(&set);
for (i = 0;i < FD_SETSIZE; i++) {

if (!FD_ISSET(i,&set))
continue;

Tk_CreateFileHandler((ClientData) i,TK_READABLE,
callback,(ClientData) i);

}

/* send data */

Lindell Expiration:August 1999 [Page 18]

INTERNET-DRAFT SCRAPIv.2 February 1998

scrapi_close(NULL,0,0);
}

7. Conclusion

The SCRAPI interface provides a simple method to add RSVP support to many network
applications. Itsupports both IPv4 and IPv6 and attempts to simplify user developed
code to support both address families. Codingexamples are provided to give additional
guidance on the usage of this API.

8. SecurityConsiderations

Security considerations are not discussed in this memo.

9. Acknowledgements

The author would like to thank Steve Berson for helping to define this API.I would also
like to thank Bob Braden for his help in improving the definition of the API and corre-
sponding documentation.

10. References

[1] Braden,R., Ed., et. al.,Resource Reservation Protocol (RSVP) - Version 1 Func-
tional Specification, RFC 2205, September 1997.

[2] Braden,R., Hoffman, D.,RAPI -- An RSVP Application Programming Interface Ver-
sion 5, Work In Progress, November 1997.

[3] Shenker, S., Partridge, C., Guerin, R.,Specification of Guaranteed Quality of Ser-
vice, RFC 2212, September 1997.

[4] Wroclawski, J.,Specification of the Controlled Load Quality of Service, RFC 2211,
September 1997.

[5] Berger, L., O’Malley, T., RSVP Extensions for IPSEC Data Flows, RFC 2207,
September 1997.

Lindell Expiration:August 1999 [Page 19]

INTERNET-DRAFT SCRAPIv.2 February 1998

11. Author’ s Address

Bob Lindell
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

12. Appendix 1: Address Manipulation API Description

These are utility functions to ease the development of an interface which supports IPv4
and IPv6. These are not viewed as part of the SCRAPI API, but rather a collection of
useful address manipulation functions which should be provided in system libraries.In
the future, these functions will be removed in favor of system supplied functionality.

Macro Name: SOCKADDR

Description: Astruct sockaddr data type that is large enough for both IPv4 and IPv6
addresses.

Function Name: scrapi_sockaddr_multicast

Syntax: intscrapi_sockaddr_multicast(

const struct sockaddr *address

);

Description: Determineif an address is multicast or unicast.

Return Values: TRUE if multicast,FALSE otherwise.

Function Name: scrapi_sockaddr_parse

Syntax: intscrapi_sockaddr_parse(

struct sockaddr *address
const char *name,
unsigned short port

);

Description: Performa host name lookup or parse an address and initialize a struct
sockaddr structure.

Return Values: TRUE if parsed,FALSE otherwise.

Lindell Expiration:August 1999 [Page 20]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_sockaddr_print

Syntax: constchar * scrapi_sockaddr_print(

const struct sockaddr *address

);

Description: Prettyprint an address.

Return Values: Avalid string if printable,NULL otherwise.

Function Name: scrapi_sockaddr_get_addr

Syntax: intscrapi_sockaddr_get_addr(

const struct sockaddr *address,
char *addr

);

Description: Storethe address field of the sockaddr structure to a network order
binary representation of an address which starts at the memory loca-
tion specified.

Return Values: TRUE if successful,FALSE otherwise.

Function Name: scrapi_sockaddr_set_addr

Syntax: intscrapi_sockaddr_set_addr(

struct sockaddr *address,
char *addr

);

Description: Loadthe address field of the sockaddr structure from a network order
binary representation of an address which starts at the memory loca-
tion specified.

Return Values: TRUE if successful,FALSE otherwise.

Function Name: scrapi_sockaddr_get_port

Syntax: unsignedshort scrapi_sockaddr_get_port(

const struct sockaddr *address

);

Description: Getthe port number.

Return Values: Theport number if successful, 0 otherwise.

Lindell Expiration:August 1999 [Page 21]

INTERNET-DRAFT SCRAPIv.2 February 1998

Function Name: scrapi_sockaddr_set_port

Syntax: intscrapi_sockaddr_set_port(

struct sockaddr *address,
unsigned short port

);

Description: Setthe port number.

Return Values: TRUE if successful,FALSE otherwise.

Function Name: scrapi_sockaddr_any

Syntax: intscrapi_sockaddr_any(

struct sockaddr *address,
int family

);

Description: Initializea struct sockaddr to the wildcard address and port number for
the given address family.

Return Values: TRUE if successful,FALSE otherwise.

Function Name: scrapi_sockaddr_length

Syntax: intscrapi_sockaddr_length(

struct sockaddr *address

);

Description: Returnthe length of a struct sockaddr for the given address family.

Return Values: Thelength if successful, 0 otherwise.

Lindell Expiration:August 1999 [Page 22]

INTERNET-DRAFT SCRAPIv.2 February 1998

Table of Contents

1. Introduction 2
2. Functional Description. 3
3. The Simplified Error Model of SCRAPI 5
4. A Comparison to RAPI. 7
5. Application Programming Interface Definition 8
5.1. Reservation API Description 8
5.2. Error Handling API Description 11
5.3. Asynchronous Event Loop API Description. 14
6. Application Code Templates 15
6.1. Unicast Performance Measurement Application. . . . 15
6.1.1. Sender Application. 15
6.1.2. Receiver Application 17
6.2. Multicast Multimedia Application. 17
7. Conclusion 19
8. Security Considerations 19
9. Acknowledgements 19
10. References 19
11. Author’s Address 20
12. Appendix 1: Address Manipulation API Description. . . 20

Lindell Expiration:August 1999 [Page 23]

