NAME SERVICE LOCALITY AND CACHE DESIGN
IN A DISTRIBUTED OPERATING SYSTEM*

Alan B. Sheltzer
Robert Lindell
Gerald J. Popek

University of California, Los Angeles

ABSTRACT

Name service is an important component in the
overall behavior of distributed operating systems. The use
of a distributed name cache to improve system perfor-
mance and reduce the elapsed time to access remote
resources is explored. A classical cache design evaluation,
applied to the problem of distributed name management, is
presented. Reference strings, collected from a production
distributed system, are used as input to a trace-driven
simulation to determine the degree of locality exhibited in
name to object translation, evaluate cache parameters, and
justify the utility of a distributed name cache.

1. Introduction

Operating systems which provide a flexible,
hierarchical name space often spend a substantial portion
of their time supporting the mapping of user specified
names into the low level descriptors necessary to access
resources;, 40% of Berkeley Unix overhead is reportedly
consumed in this mannerl. Nevertheless, the independence
between a resource’s name and its location on disk or else-
where is very valuable. In a distributed operating system,
this independence between resource name and location,
called network transparency, is especially important. Un-
fortunately, the cost is also potentially greater, since in-
teraction with remote name service may be needed in addi-
tion to any relevant disk lookup and processor activity.

In this paper, we investigate the costs of name
service in a distributed operating system environment, and
find that it is an important component of the system’s
overall behavior. We then consider whether a distributed
cache system, with its underlying assumptions of locality
and requirement for multicache consistency, is a suitable

*This research has been supported by the Defense
Advanced Research Projects Agency under contract DSS
MDA-903-82-C-0189.

solution. A classical cache design evaluation is performed
by collecting extensive reference strings from a production
distributed system environment and simulating various
cache sizes, invalidation agorithms, and multicache con-
sistency strategies.

A relatively simple cache design is found to be
quite effective. The resulting improvement in overal sys
tem performance and reduction in elapsed time to access
remote resources helps extend the feasibility of transparent
distributed systems to much larger scale systems, including
those with network links of lesser quality than typical
LANSs.

1.1 Caches

Caches are typicaly placed between a large, rela-
tively dlow and inexpensive source of information and a
much faster consumer of that information. The cache
capacity is relatively small and expensive, but quickly ac-
cessible. The goal is for the cache behavior to dominate
performance but the large storage facility to dominate
costs, thus giving the illusion of a large, fast, inexpensive
storage system. Successful operation depends both on a
substantial level of locality being exhibited by the consu-
mer, and careful strategies being chosen for cache opera-
tion - disciplines for replacement of contents, update syn-
chronization, etc. The value of successful caches often is
enormous, representing the difference between satisfactory
cost/performance and failure.

Caches have been used for many years between
main memory and the central processor. Recently, distri-
buted caches have appeared in integrated hardware systems
constructed of multiple processors. In these multiprocessor
architectures, each processor has a private cache, and a
mechanism exists to prevent the simultaneous existence of
different versions of the same data block in different
caches. The considerations in the design of multiprocessor
hardware caches are present, in analogous ways, in a distri-
buted operating system, and their proper resolution is of

similar importance.

1.2 Name Service in a Distributed Environment

In a system with a location transparent name
space, it is the system’s responsibility to find the resource
given its name, and set up all necessary bindings for subse-
quent access. The cost of this distributed name lookup,
and the associated update of relevant (perhaps partialy re-
plicated) tables as resources are created, destroyed, and
moved, can be a maor cost of the distributed system’'s
operation. In a production Locus installation? for example,
it is not uncommon for half of total network traffic to be in
support of name service.

An immediate question is whether this key func-
tion is susceptible to cache based speedup methods. If so,
the performance improvement can be remarkable. Howev-
er, one must first determine whether name lookup exhibits
the requisite degree of locality, and whether the necessity
to invalidate other systems’ cache entries when a name ser-
vice update occurs represents significant cost, complexity
and delay. If these characteristics are satisfactory, one can
then proceed with the determination of the other relevant
cache design parameters.

In order to address these issues, over 15 million
"name-service" reference string entries were collected dur-
ing normal operation of a production Locus system. Each
such entry represents a path name element in the distribut-
ed Unix directory hierarchy. These measurements serve as
a basis for much of the discussion in this paper. The refer-
ence strings were input to a trace-driven simulation which
was used to determine the degree of locdlity in directory
referencing, determine directory cache parameters, and
evauate the overhead of maintaining multicache consisten-

cy.

1.3 Organization of this Paper

We first briefly review the Locus operating sys
tem, including the procedure followed in name service.
Cache design issues are then raised, and the data which
was collected is summarized; some of it isinteresting in its
own right. We then lay out the design of a distributed
directory cache for Locus, and evaluate its effectiveness.
The results are discussed, their applicability to other en-
vironments is postulated, and future work is outlined.

2. The Locus Distributed Operating System

Locus is a distributed version of Unix that runs on
high speed, low delay local area networks. Locus provides
a fully transparent, distributed file system as well as tran-

sparent support for distributed processes. Networks of
heterogeneous cpu types are also handled transparently.

The file system appears to the user and applica-
tions software as a single, tree structured name space with
one root, across the entire collection of machines. Chang-
ing the storage site of a file does not require changing its
name. Important files are replicated below the user visible
level, and the system is responsible for keeping the copies
mutually consistent.

Process execution in Locus is similarly tran-
sparent. It is possible to create (i.e. fork) processes localy
or remotely, with exactly the same semantics. Processes
may migrate to a similar cpu type while in the midst of
execution without effect on continued correct execution.
Processes interact with one another across machine boun-
daries in the same manner as if they were co-located (e.g.
Unix signals and ipc operate transparently networkwide).
Besides providing access to remote resources through the
same interfaces as local ones, Locus also achieves a sub-
stantial degree of performance transparency. The delay in
access to remote resources typicaly is little different than
the delay in access to local resources.

Locus has been extended to operate in an internet-
work environment consisting of LANs interconnected by
long haul networks. Full transparency is maintained with
remote performance for typical interactive activity ap-
proaching or equaling local performance even when
resources are located across a long haul link.

2.1 Single site pathname expansion

In a hierarchically structured file system such as
Unix or Locus, each file in the system is either a data file
or a directory. Directories contain entries of the form
<string name, file descriptor pointer> where the file
descriptor pointer is an index into a table of file descriptors
(cdled "inodes" in Unix) and each inode contains the dev-
ice addresses of the actual data pages for the target file,
plus status information. An object is referred to by a path-
name which is a sequence of directory names separated by
slashes and ending in a file name. A pathname starts either
at the root directory or the current working directory.

The system maps a name to an object by reading
the first directory component in the pathname and then
sequentialy searching the entries within the directory for a
match on the string name of the next pathname component.
If an entry is found, the file descriptor pointer of the entry
is used to locate the device addresses for the next path-
name component. |If the next component is the last com-
ponent in the pathname, the target object has been found.
If not, the pathname component is a directory and search-

ing continues.

2.2 Disgtributed pathname expansion

In a distributed system, the directories and target
object that are referred to by a pathname may be stored at
sites other than the site that requests the target object.
There are two approaches to pathname expansion in a dis-
tributed environment. In the first approach, caled tran-
sparent pathname expansion, each directory is brought
across the network from the storage site and searched at
the using site (the site that requests the pathname expan-
sion). This approach has the advantage that distributed
operation is identical to single site operation as long as
there is a transparent mechanism for reading remote pages.
However, a substantial amount of network traffic may be
generated during pathname expansion as each directory
component is opened, read, and closed.

In the second approach called remote pathname
expansion, the pathname is expanded at each site that
stores a pathname component. When the using site finds a
pathname component that is stored remotely, it packages
the remainder of the pathname into a network request mes-
sage and sends it to the site that stores that component.
The storage site services the regquest by continuing path-
name expansion, opening and searching the directories lo-
cally. If al of the remaining components are stored at the
storage site, then the result of the pathname expansion is
returned to the using site. If the storage site finds that a
component is stored remotely it sends the remainder of the
pathname to the next storage site and pathname expansion
continues there. This approach reduces network traffic for
pathnames that contain many directories al stored at a sin-
gle remote site. However, if the pathname contains direc-
tories that are stored at severa sites, network traffic is not
reduced. More importantly, if there is a significant level of
user program access directly to directory pages, substantial
directory page traffic results in addition to remote path-
name expansion messages. Measurements of the UCLA
Locus network indicate that approximately 20% of all
commands issued require user program access to direc-
tories. Common tasks such as listing the contents of a
directory, copying or removing all entries in a directory,
expanding wildcard arguments, and accessing parent direc-
tories, all use information found in directory pages. With
remote pathname expansion, directory pages remain at the
storage site, so this approach does not effectively reduce
message traffic in many important cases.

The Locus distributed operating system supports
transparent pathname expansion. References to a remotely
stored directory that is currently open at a using site do not
generate network traffic if the directory pages are found in
the local buffer cache. However, when a remotely stored

directory is closed, al of the associated file pages are
flushed from the buffer cache to insure that only one ver-
sion of the directory exists in the system. Thus, the next
open of a remote directory involves rereading all the direc-
tory pages to be searched.

An example of the network traffic generated to
expand a pathname (/th/fooffilel) under Locus where the
directories and target file reside at a site different than the
using site is shown in figure 1.

Using Site Storage Site
Open th -

«— ROpen*
Read —

«— RRead
Usclose -

«— RUsclose
Open foo -

«— ROpen
Read —

«— RRead
Usclose -

«— RUsclose
Open filel -

«— ROpen

Figure 1: Message Traffic for Pathname Expansion of
/th/fooffilel

The th directory is opened and read across the network.
The directory is searched for an entry that contains the
string name foo and when such an entry is found, the th
directory is closed. Next, the "foo" directory is opened
and read across the network and the string name filel is
searched for. When a match is found, the foo directory is
closed and the target data file (file 1) is opened.

Fortunately, the activity of most users is usualy
confined to a small, dowly changing subset of the entire
name hierarchy. Furthermore, most directories have a high
read to modify ratio. This behavior implies that the
number of messages due to pathname expansion can be re-
duced by caching directory pages and related file descrip-
tors at each site even after the directory has been closed.
If significant directory reference locality exists, then
current references to directory pages are likely to be found
in the directory cache and will not generate network traffic.

*Responses are indicated as Rmessage-type, ie. the Open
Response is shown as ROpen. The explicit ACK messages
sent for each Locus message (except for Read and RRead)
are not shown.

Total network traffic will be decreased and more impor-
tantly, the elapsed time to reference remotely stored ob-
jects will be reduced.

3. Issuesin distributed cache design

In order to properly evaluate the potential
effectiveness of a cache, it is important first to understand
the necessary design goals and issues. Then measurements
and simulations can be used to determine specific parame-
ters. The goals in the design of a hardware or software
cache® are:

1 Maximize the probability of finding a reference in
the cache (hit ratio)

2. Minimize the time to access the information that
is in the cache (access time)

3. Minimize the delay due to a miss

4. Minimize the frequency and overhead of invalidat-
ing a cache entry.

A careful selection of cache parameters, including
cache size and replacement algorithm, is necessary to
achieve these goals. A distributed cache presents the addi-
tional problem of guaranteeing multicache consistency. |If
caches at several sites store a copy of the same information
(e.g. a directory page) and one of the sites modifies the in-
formation without notifying the others, an inconsistent state
results with possible disastrous conseguences.

The hit ratio for the cache is improved by increas-
ing the cache size, given a significant amount of directory
locality. However, the memory requirements for the sys
tem and the time to access a given cache element aso in-
crease as the cache size increases. Furthermore, some
directory references are unique (never rereferenced), so in-
creasing the cache size beyond a certain point will not im-
prove the hit ratio. In a distributed cache, the overhead of
maintaining multicache consistency increases as cache size
increases because a larger cache increases the probability
that a site is caching a page that must be invalidated.

There are severa approaches to maintaining con-
sistency for a multisite directory cache. In the simplest ap-
proach, directory pages are flushed from the cache whenev-
er the directory is closed. A request to open for
modification is blocked until all sites have closed the re-
quested directory. This policy insures multisite cache con-
sistency since a site that has a directory open for
modification knows that no other valid copies of the direc-
tory page(s) exist at other sites. However, the cache is

only useful during the period that a directory is open.

In another approach, directory pages remain in the
cache after the directory has been closed. Whenever a
storage site receives a request for modification for a direc-
tory page, it broadcasts a message to all other sites identi-
fying the directory page. Each site examines its cache for
the page and invalidates it if present. Although this
scheme may work well for a few sites, as the number of
sites increases, the network traffic generated becomes
prohibitive.

A better solution is for the storage site to record
the sites that have reguested a given directory page. When
the storage site receives a request to modify the directory
page, only those sites in the list are notified to flush the
page from their caches. The overhead for cache invalida-
tion is acceptable if there is a low rate of directory
modification to directories that are shared among sites and
if only a small number of sites share a directory when that
directory is modified.

When the directory cache is full and a cache miss
occurs, some existing cache entry must be replaced with
the target reference. A good replacement algorithm is
necessary to achieve a satisfactory hit ratio. Choices in-
clude a global LRU algorithm, LRU per process or user, or
first in first out. The delay due to removing the selected
entry from the cache and bringing in the target reference
must also be minimized.

4. Directory reference measurements

A trace-driven simulation was used to investigate
directory reference locality and evaluate different design
choices for the distributed directory cache. Directory
reference strings were collected on each site of the 15 site
UCLA Vax Locus network for 10 hour periods for 6 days.
That network commonly supports more than 150 active
users during the five hour busy period of each day. There
are various organizations administrating subsets of the
machines; as a result, certain communities of users regular-
ly cross many machine boundaries, while other users ac-
tivity is primarily local.

An event trace was recorded each time the operat-
ing system referenced a directory component during path-
name expansion. Each event contained the name of the
directory reference, its file descriptor, an indication of
whether the directory was stored at the site that issued the
reference or at some remote site, an indication of whether
the directory reference was found in the existing buffer
cache of the using site, the type of reference (for read or
for modification), a networkwide timestamp, plus other in-

formation. References to directories in which the directory
was the target file (e.g. directory listing commands) were
not recorded. Approximately 2 to 3 million entries were
collected per day.

The reference strings for each site were combined
and sorted by time. Locus contains an intersite time syn-
chronization facility that keeps the clocks on all sites
within a few milliseconds of one another. Cache simula-
tions were run on the combined, multisite reference string
so the caches on al sites were simulated simultaneously.
The extent of directory sharing between sites and the effect
of multisite cache invalidation could thus be evaluated.

4.1 Measurement results

The data which was collected showed differences
in certain measurements among sites, but for any given
site, the measurements were quite stable.

For a given site, the percent of references for re-
motely stored directories, the percent of references for
modification, and the percent of remote references not
found locally, showed little variance during the 6 days of
measurements. For all sites, the percent of directory refer-
ences for modification also varied little, with an average of
2.5% and a standard deviation of 0.5. The variance among
sites for the local versus remote values was more pro-
nounced because different sites support different mixes of
local and remote service. Although local directory refer-
ences were dominant on all sites, the percent of references
for remotely stored directories varied from 2.3% to 14.6%.
The percent of remote references not found at the using
site varied from 20.2% to 83.2%. On sites where remote
traffic was mostly due to the activity of background
processes that kept directories open, this percentage was
low, but on sites where remote traffic supported normal in-
teractive computing, the value was much higher.

Directory reference traces collected for 10 hours
for a single example site are shown in figure 2. As expect-
ed, most of the references are local (89%). However, a
significant portion (71%) of the remotely stored directory
pages must be brought across the network during pathname
expansion. The remaining references to remotely stored
directories are references to directories that are currently
open localy and are therefore found in the buffer cache
("incore") of the using site. The goal of a directory cache
is to increase the number of remotely stored directory
pages that are found incore at the using site. The number
of directory references that are requests for modification is
quite low (1.3%) but single site measurements are not
enough to determine the amount of directory sharing when
modification is requested. The results from the trace-
driven smulation using the combined data from al sites is

needed to determine the overhead of multicache invaida-
tion.

References
Tota Locd Remote
of references | 354491 317199 37292
% of references 100.0 89.48 10.52
% for mod 127 1.07 2.99
% not incore 17.41 11.12 70.87

Figure 2: Results of Directory Reference
Event Collection

4.2 Locdlity in Directory Referencing

The property of "locality of reference” has been
observed in program execution*®, file access®, as well as
database access’. We are interested in the degree to which
locality is also exhibited by operating system functions and
in name to object trandation in particular. The operating
system constantly searches for information (e.g. the tranda-
tion from string name to object) and then discards this in-
formation when in fact, the information may be used again
in the near future. If locality exists, caching recently used
information is likely to reduce the overhead of operating
system management.

A measure of the locality present in a reference
string is given by Rodrigiuez-Rosell® and used by Kearns’
to demonstrate locality in database reference strings:

L(t,D) =w(tD/t

where L(t,T) is interpreted as the instantaneous locality
measure at time t. This measure can be applied to directo-
ry reference strings by setting:

T = window size in # of directory references
w(t,T) = working set size at time t for window t
= the # of distinct directories referenced
among the T most recently referenced
directories in the reference string

Averaging L(t,T) over the number of references gives the
average locality L(t) for a given window size. A reference
string that exhibits little rereferencing and thus has poor lo-
cality will have a value of L(1) near 1 over a wide range
of window sizes. If there is substantial rereferencing in a

reference string, then as the window size increases we ex-
pect L(t) to decrease rapidly as references are likely to be
found in the current working set so the average working
set size does not increase.

A plot of the average locality L(t) versus window
size for the example single site directory reference string is
shown in figure 3.

Figure 3: Average locality L(t) as a function of
window size t for directory references

The sharp decrease in L(t) implies a significant level of lo-
cality in directory referencing and suggests that a directory
cache of reasonable size would be very beneficial. At a
window size of about 40, the curve flattens out, indicating
that some small number of directories are never rerefer-
enced.

4.3 Trace-driven ssimulation results

A trace-driven simulation was used to evaluate
directory cache size, replacement algorithms, and the over-
head of maintaining multicache consistency. A plot of the
miss ratio versus cache size for a directory cache using a
global LRU replacement algorithm is shown in figure 4.
The miss ratio is the probability of not finding a remotely
stored directory during pathname expansion at the using
site. The cache size is given in number of directory pages
with the assumption that each directory is stored on a sin-
gle page. The cache size would be dightly larger to sup-
port the small number of directories stored on more than
one page. A cache size of just 15 directory pages for the
Locus site considered in figure 2 reduces the miss ratio
from about 71% without a directory cache to just 11%.
Almost 95% of the remotely stored directory references
will be found at the using site with a cache of 40 pages.

Figure 4: Miss ratio versus window size for
a directory cache

Therefore, in most cases, the elapsed time to access remote
objects will be greatly reduced since 95% of al accesses to
remote objects will not include the overhead of pathname
expansion. The hit ratio for all sites with a cache of 40
pages varies from about 87% to 96%. Increasing the cache
size further does not appreciably improve the miss ratio as
some small number of directory pages are never rerefer-
enced.

Instead of using a single, globa cache at each
site, a cache could be dedicated to each user. Cache entries
would be replaced as each user cache filled up. Our meas-
urements show that the number of active user ids per site
varied from a few to over twenty. Users frequently exe-
cute processes remotely, especially on server sites, thus in-
creasing the number of user ids per site. Results from the
trace-driven simulation show that although a cache per user
(with a per user LRU replacement agorithm) uses a small-
er cache size per user to achieve the miss ratio of the glo-
bal cache, the total number of pages dedicated to the direc-
tory cache is substantialy greater.

When a request for modification is received by the
storage site of a directory, the storage site must send a
cache invalidation message to each site that currently has
the page in its cache. Both the number of directory refer-
ences that require cache invalidation messages and the
number of sites that must receive cache invalidation mes-
sages must be very low for the distributed cache to be
effective.

Data from the directory reference traces for a sin-
gle day indicate that over a 10 hour period there were
2,474,407 total directory references issued by al sites.
Results from the trace-driven simulation show that even if
each site provides a cache of 60 directory pages, only 1265
or 0.051% of the references require cache invalidation.
The distribution of the number of sites that need to be sent
cache invalidation messages for each reference that re-
quires cache invalidation is shown in figure 5 for a cache
of 60 pages. Only 93 references or .0038% of the total
number of references require more then a single cache in-
validation message. Thus, the overhead of maintaining
multicache consistency is quite low and should not be cost-
ly even as the number of sites in the system grows sub-
stantially.

Figure 5: Distribution of # of sites that require cache
invalidation messages

A plot of the miss ratio versus cache size for a
single site cache (without cache invalidation) and the miss
ratio versus cache size for a distributed cache where cache
invalidation is generated by the simulation, is shown in
figure 6. The dlightly higher miss ratio of the cache invali-
dation plot is mostly due to counting all references for
modification as misses (since they must be serviced by the
storage site) rather than from the removal of invalidated
entries from the cache.

5. Operation of the Distributed Directory Cache

Pathname expansion with a directory cache works
as follows. When a using site searches a remotely stored
directory during pathname expansion and the directory
pages are not found in the directory cache at the using site,

Figure 6: Plot of miss ratio with and without cache
invalidation

a "no open read" (NOR) request message is sent to the site
that stores the directory. The storage site returns the file
descriptor (inode) and the first directory page to the using
site, which enters the items into the local directory cache.
The storage site adds the using site to a list of all sites that
currently have that file open for NOR. Additional directo-
ry pages are read by the using site as usual and stored in
the cache. Remotely stored directory pages are removed
from the using site directory cache on an LRU basis.

When a cache miss forces a directory page to be
removed from the cache, the storage site must remove the
using site from the NOR list for that directory. To reduce
the delay due to a cache miss, an explicit "removed from
cache” message of an NOR directory is not sent to the
storage site, but is instead piggybacked on the next open
message to that storage site. A table of the last few NOR
"removed from cache' messages are kept for each storage
site to be sent with the next open message. If an overflow
of this table occurs before the next open message is sent, a
"removed from cache" message is dropped. Given the low
rate of cache invalidation, the overhead of sending an in-
validation request to a site that doesn’t actually have the
directory in its cache should be minimal.

All opens for modification are sent to the site that
stores the directory. When a request for modification is re-
ceived for a directory which has a non-null NOR list, the
storage site sends a message to each site in the list to in-
validate the file descriptor and pages associated with that
directory. After acknowledgement is received from all
sites, the storage site opens the directory for modification.
After the directory has been closed for modification, it can

be reopened NOR by other using sites.

6. Discussion and Future Work

The primary goa of the distributed name service
cache discussed in this paper is the reduction in system
response time to users’ remote requests. A secondary goal
is to reduce overall network traffic, and the corresponding
system overhead that message sending and receiving gen-
erates. The use of a distributed cache for Locus substan-
tially improves remote performance and reduces network
traffic, as expected. The degree to which overal system
performance is improved varies, depending on the level of
remote behavior actually taking place. Caching is opera-
tional in a Locus testbed used for systems research; at the
time this paper was written, the implementation was being
prepared for production use. Available experience in its
use corresponds well to the results of reference string
analysis reported in this paper.

Elsewhere®, the utility and feasibility of full tran-
sparency, even in networks with much higher delay and
bandwidth limits than LANS, is discussed. It was conclud-
ed that transparency is quite attractive and feasible. The
distributed caching discussed in this paper is especialy
promising in those internet systems, because of the obser-
vation that a substantial portion of network traffic is nam-
ing related, and since great reduction of such traffic is
especially beneficia in internet environments.

While it is believed that the reference strings
which have been collected adequately represent typical use
patterns, nevertheless there are other environments which
need to be examined. One wishes to investigate a system
on which there is a different application mix; commercia
rather than engineering and scientific activities, for exam-
ple. It would also be instructive to conduct similar studies
for systems other than Locus.

A workstation oriented network presents a
different situation, also. The network we considered con-
sisted of multiuser systems, with an average of approxi-
mately ten users being served per machine. An effective
cache size was of the order of 30 pages. In a single user
node, we expect that the desired cache size will be
correspondingly smaller, perhaps just a few pages. The
reference strings will be reanalyzed to indicate what cache
sizes may be appropriate in this case.

In summary, name service in the distributed en-
vironment which was studied exhibited a high level of lo-
cality, with an exceptionally low level of conflict between
modification to directories at one site and their concurrent
use elsawhere in the network. Further, the implementation

effort to support the cache disciplines described in this pa-
per is not complex. Thus we conclude that a distributed
name service cache can be implemented in a reasonable
manner, and it can have a substantia positive effect on
distributed system performance.

References
[1] M. Karels, private communication, 1984.

[2] B. Waker, G. Popek, B. English, C. Kline, G.
Thiel, "The LOCUS Distributed Operating System”,
Proceedings of the 9th ACM Symposium on
Operating System Principles, Oct., 1983.

[3] A. Smith, "Cache Memories', Computing Surveys,
Vol. 14, No. 3, September 1982.

[4] P. Denning, "On modeling program behavior" in
Proc. Spring Joint Computer Conference, vol. 40,
AFIPS Press, 1972, pp. 937-944.

[5] A. Madison and A. Batson, "Characteristics of Pro-
gram Localities’, CACM, Vol. 19, No. 5 May
1976.

[6] S. Maumdar, "Locality and File Referencing
Behavior: Principles and Applications', M.S. thesis,
University of Saskatchewan, August 1984.

[7] J. Kearns and S. DeFazio, "Locality of Reference in
Hierarchical Database Systems', |IEEE Transactions
on Software Engineering, March 1983.

[8] J. Rodriguez-Rosell, "Empirical Data Reference
Behavior in Data Base Systems', |IEEE Computer,
November 1976, pp. 9-13.

[9] A. Sheltzer, "Network Transparency in an Internet-
work Environment", Ph.D. Dissertation, Computer
Science Department, University of California, Los
Angeles, 1985.

