
NAME SERVICE LOCALITY AND CACHE DESIGN
IN A DISTRIBUTED OPERATING SYSTEM*

Alan B. Sheltzer

G
Robert Lindell
erald J. Popek

s

iiiiiiiiiii

University of California, Los Angele

T

N

ABSTRAC

ame service is an important component in the
e

o
overall behavior of distributed operating systems. The us
f a distributed name cache to improve system perfor-

r
mance and reduce the elapsed time to access remote
esources is explored. A classical cache design evaluation,

p
applied to the problem of distributed name management, is
resented. Reference strings, collected from a production

n
s
distributed system, are used as input to a trace-drive
imulation to determine the degree of locality exhibited in

d
j
name to object translation, evaluate cache parameters, an
ustify the utility of a distributed name cache.

iiiiiiiiiiiiin

O

1. Introductio

perating systems which provide a flexible,

o
hierarchical name space often spend a substantial portion
f their time supporting the mapping of user specified

s
r
names into the low level descriptors necessary to acces
esources; 40% of Berkeley Unix overhead is reportedly

econsumed in this manner . Nevertheless, the independenc1

between a resource’s name and its location on disk or else-
,

t
where is very valuable. In a distributed operating system
his independence between resource name and location,

f
called network transparency, is especially important. Un-
ortunately, the cost is also potentially greater, since in-

-
t
teraction with remote name service may be needed in addi
ion to any relevant disk lookup and processor activity.

e
s

In this paper, we investigate the costs of nam
ervice in a distributed operating system environment, and

s
o
find that it is an important component of the system’
verall behavior. We then consider whether a distributed

y
a
cache system, with its underlying assumptions of localit
nd requirement for multicache consistency, is a suitable

*
hhhhhhhhhhhhhhh
This research has been supported by the Defense

-
M
Advanced Research Projects Agency under contract DSS

DA-903-82-C-0189.

solution. A classical cache design evaluation is performed
n

d
by collecting extensive reference strings from a productio
istributed system environment and simulating various

-
s
cache sizes, invalidation algorithms, and multicache con
istency strategies.

A relatively simple cache design is found to be
-

t
quite effective. The resulting improvement in overall sys
em performance and reduction in elapsed time to access

t
d
remote resources helps extend the feasibility of transparen
istributed systems to much larger scale systems, including

l
L
those with network links of lesser quality than typica

ANs.

iiiiiiiiiis1.1 Cache

Caches are typically placed between a large, rela-

m
tively slow and inexpensive source of information and a

uch faster consumer of that information. The cache
-

c
capacity is relatively small and expensive, but quickly ac
essible. The goal is for the cache behavior to dominate

e
c
performance but the large storage facility to dominat
osts, thus giving the illusion of a large, fast, inexpensive

a
s
storage system. Successful operation depends both on
ubstantial level of locality being exhibited by the consu-

-
t
mer, and careful strategies being chosen for cache opera
ion - disciplines for replacement of contents, update syn-

e
chronization, etc. The value of successful caches often is
normous, representing the difference between satisfactory

cost/performance and failure.

Caches have been used for many years between
-

b
main memory and the central processor. Recently, distri
uted caches have appeared in integrated hardware systems

r
a
constructed of multiple processors. In these multiprocesso
rchitectures, each processor has a private cache, and a

f
d
mechanism exists to prevent the simultaneous existence o
ifferent versions of the same data block in different

h
caches. The considerations in the design of multiprocessor
ardware caches are present, in analogous ways, in a distri-

fbuted operating system, and their proper resolution is o

1

similar importance.

.2 Name Service in a Distributed Environmentii

e
s

In a system with a location transparent nam
pace, it is the system’s responsibility to find the resource

-
q
given its name, and set up all necessary bindings for subse
uent access. The cost of this distributed name lookup,

p
and the associated update of relevant (perhaps partially re-
licated) tables as resources are created, destroyed, and

s
o
moved, can be a major cost of the distributed system’
peration. In a production Locus installation for example,2

n
s
it is not uncommon for half of total network traffic to be i
upport of name service.

An immediate question is whether this key func-
,

t
tion is susceptible to cache based speedup methods. If so
he performance improvement can be remarkable. Howev-

t
er, one must first determine whether name lookup exhibits
he requisite degree of locality, and whether the necessity

-
v
to invalidate other systems’ cache entries when a name ser
ice update occurs represents significant cost, complexity

n
t
and delay. If these characteristics are satisfactory, one ca
hen proceed with the determination of the other relevant

cache design parameters.

In order to address these issues, over 15 million
-

i
"name-service" reference string entries were collected dur
ng normal operation of a production Locus system. Each

-
e
such entry represents a path name element in the distribut
d Unix directory hierarchy. These measurements serve as

-
e
a basis for much of the discussion in this paper. The refer
nce strings were input to a trace-driven simulation which

y
r
was used to determine the degree of locality in director
eferencing, determine directory cache parameters, and

-
c
evaluate the overhead of maintaining multicache consisten
y.

1.3 Organization of this Paperiiiiiiiiiiiiiiiiiiiiiiiiii

We first briefly review the Locus operating sys-
.

C
tem, including the procedure followed in name service

ache design issues are then raised, and the data which
s

o
was collected is summarized; some of it is interesting in it
wn right. We then lay out the design of a distributed

.
T
directory cache for Locus, and evaluate its effectiveness

he results are discussed, their applicability to other en-
vironments is postulated, and future work is outlined.

2. The Locus Distributed Operating Systemiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n
h

Locus is a distributed version of Unix that runs o
igh speed, low delay local area networks. Locus provides

-a fully transparent, distributed file system as well as tran

sparent support for distributed processes. Networks of
heterogeneous cpu types are also handled transparently.

The file system appears to the user and applica-

o
tions software as a single, tree structured name space with
ne root, across the entire collection of machines. Chang-

n
ing the storage site of a file does not require changing its
ame. Important files are replicated below the user visible

s
m
level, and the system is responsible for keeping the copie

utually consistent.

Process execution in Locus is similarly tran-

o
sparent. It is possible to create (i.e. fork) processes locally
r remotely, with exactly the same semantics. Processes

f
e
may migrate to a similar cpu type while in the midst o
xecution without effect on continued correct execution.

d
Processes interact with one another across machine boun-
aries in the same manner as if they were co-located (e.g.

.
B
Unix signals and ipc operate transparently networkwide)

esides providing access to remote resources through the
-

s
same interfaces as local ones, Locus also achieves a sub
tantial degree of performance transparency. The delay in

n
t
access to remote resources typically is little different tha
he delay in access to local resources.

-
w

Locus has been extended to operate in an internet
ork environment consisting of LANs interconnected by

h
r
long haul networks. Full transparency is maintained wit
emote performance for typical interactive activity ap-

r
proaching or equaling local performance even when
esources are located across a long haul link.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin2.1 Single site pathname expansio

In a hierarchically structured file system such as

o
Unix or Locus, each file in the system is either a data file
r a directory. Directories contain entries of the form

e
d
<string name, file descriptor pointer> where the fil
escriptor pointer is an index into a table of file descriptors

-
i
(called "inodes" in Unix) and each inode contains the dev
ce addresses of the actual data pages for the target file,

n
plus status information. An object is referred to by a path-
ame which is a sequence of directory names separated by

r
a
slashes and ending in a file name. A pathname starts eithe
t the root directory or the current working directory.

g
t

The system maps a name to an object by readin
he first directory component in the pathname and then

a
m
sequentially searching the entries within the directory for

atch on the string name of the next pathname component.

i
If an entry is found, the file descriptor pointer of the entry
s used to locate the device addresses for the next path-

-
p
name component. If the next component is the last com
onent in the pathname, the target object has been found.

If not, the pathname component is a directory and search-

2

ing continues.

.2 Distributed pathname expansioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

t
o

In a distributed system, the directories and targe
bject that are referred to by a pathname may be stored at

.
T
sites other than the site that requests the target object

here are two approaches to pathname expansion in a dis-
-

s
tributed environment. In the first approach, called tran
parent pathname expansion, each directory is brought

t
t
across the network from the storage site and searched a
he using site (the site that requests the pathname expan-

o
sion). This approach has the advantage that distributed
peration is identical to single site operation as long as

.
H
there is a transparent mechanism for reading remote pages

owever, a substantial amount of network traffic may be

c
generated during pathname expansion as each directory
omponent is opened, read, and closed.

e
e

In the second approach called remote pathnam
xpansion, the pathname is expanded at each site that

p
stores a pathname component. When the using site finds a
athname component that is stored remotely, it packages

-
s
the remainder of the pathname into a network request mes
age and sends it to the site that stores that component.

n
The storage site services the request by continuing path-
ame expansion, opening and searching the directories lo-

s
cally. If all of the remaining components are stored at the
torage site, then the result of the pathname expansion is

c
returned to the using site. If the storage site finds that a
omponent is stored remotely it sends the remainder of the

c
pathname to the next storage site and pathname expansion
ontinues there. This approach reduces network traffic for

-
g
pathnames that contain many directories all stored at a sin
le remote site. However, if the pathname contains direc-

t
r
tories that are stored at several sites, network traffic is no
educed. More importantly, if there is a significant level of

l
d
user program access directly to directory pages, substantia
irectory page traffic results in addition to remote path-

L
name expansion messages. Measurements of the UCLA

ocus network indicate that approximately 20% of all

t
commands issued require user program access to direc-
ories. Common tasks such as listing the contents of a

,
e
directory, copying or removing all entries in a directory
xpanding wildcard arguments, and accessing parent direc-

r
tories, all use information found in directory pages. With
emote pathname expansion, directory pages remain at the

e
m
storage site, so this approach does not effectively reduc

essage traffic in many important cases.

s
t

The Locus distributed operating system support
ransparent pathname expansion. References to a remotely

t
g
stored directory that is currently open at a using site do no
enerate network traffic if the directory pages are found in

dthe local buffer cache. However, when a remotely store

directory is closed, all of the associated file pages are
-

s
flushed from the buffer cache to insure that only one ver
ion of the directory exists in the system. Thus, the next

t
open of a remote directory involves rereading all the direc-
ory pages to be searched.

An example of the network traffic generated to
e

d
expand a pathname (/th/foo/file1) under Locus where th
irectories and target file reside at a site different than the

using site is shown in figure 1.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iUsing Site Storage Siteiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Open th →← ROpen*
Read →← RRead
Usclose →← RUsclose
Open foo →← ROpen
Read →← RRead
Usclose →← RUsclose
Open file1 →← ROpen

i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiii c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

fFigure 1: Message Traffic for Pathname Expansion o
/th/foo/file1

.
T
The th directory is opened and read across the network

he directory is searched for an entry that contains the

d
string name foo and when such an entry is found, the th
irectory is closed. Next, the "foo" directory is opened

s
s
and read across the network and the string name file1 i
earched for. When a match is found, the foo directory is

closed and the target data file (file 1) is opened.

Fortunately, the activity of most users is usually
e

n
confined to a small, slowly changing subset of the entir
ame hierarchy. Furthermore, most directories have a high

e
n
read to modify ratio. This behavior implies that th
umber of messages due to pathname expansion can be re-

-
t
duced by caching directory pages and related file descrip
ors at each site even after the directory has been closed.

c
If significant directory reference locality exists, then
urrent references to directory pages are likely to be found

.
h
in the directory cache and will not generate network traffic
hhhhhhhhhhhhhh
*Responses are indicated as Rmessage-type, ie. the Open

s
s
Response is shown as ROpen. The explicit ACK message
ent for each Locus message (except for Read and RRead)

are not shown.

t
Total network traffic will be decreased and more impor-
antly, the elapsed time to reference remotely stored ob-

jects will be reduced.

3. Issues in distributed cache designiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

l
e

In order to properly evaluate the potentia
ffectiveness of a cache, it is important first to understand

s
a
the necessary design goals and issues. Then measurement
nd simulations can be used to determine specific parame-

c
ters. The goals in the design of a hardware or software
ache are:

1

3

. Maximize the probability of finding a reference in

2

the cache (hit ratio)

. Minimize the time to access the information that

3

is in the cache (access time)

. Minimize the delay due to a miss

-4. Minimize the frequency and overhead of invalidat
ing a cache entry.

A careful selection of cache parameters, including
o

a
cache size and replacement algorithm, is necessary t
chieve these goals. A distributed cache presents the addi-

f
c
tional problem of guaranteeing multicache consistency. I
aches at several sites store a copy of the same information

-
f
(e.g. a directory page) and one of the sites modifies the in
ormation without notifying the others, an inconsistent state

results with possible disastrous consequences.

The hit ratio for the cache is improved by increas-

l
ing the cache size, given a significant amount of directory
ocality. However, the memory requirements for the sys-

-
c
tem and the time to access a given cache element also in
rease as the cache size increases. Furthermore, some

-
c
directory references are unique (never rereferenced), so in
reasing the cache size beyond a certain point will not im-

f
m
prove the hit ratio. In a distributed cache, the overhead o

aintaining multicache consistency increases as cache size

t
increases because a larger cache increases the probability
hat a site is caching a page that must be invalidated.

-
s

There are several approaches to maintaining con
istency for a multisite directory cache. In the simplest ap-

-
e
proach, directory pages are flushed from the cache whenev
r the directory is closed. A request to open for

-
q
modification is blocked until all sites have closed the re
uested directory. This policy insures multisite cache con-

r
m
sistency since a site that has a directory open fo

odification knows that no other valid copies of the direc-
tory page(s) exist at other sites. However, the cache is

only useful during the period that a directory is open.

e
c

In another approach, directory pages remain in th
ache after the directory has been closed. Whenever a

-
t
storage site receives a request for modification for a direc
ory page, it broadcasts a message to all other sites identi-

r
t
fying the directory page. Each site examines its cache fo
he page and invalidates it if present. Although this

f
s
scheme may work well for a few sites, as the number o
ites increases, the network traffic generated becomes

prohibitive.

A better solution is for the storage site to record
n

t
the sites that have requested a given directory page. Whe
he storage site receives a request to modify the directory

e
p
page, only those sites in the list are notified to flush th
age from their caches. The overhead for cache invalida-

m
tion is acceptable if there is a low rate of directory

odification to directories that are shared among sites and
t

d
if only a small number of sites share a directory when tha
irectory is modified.

When the directory cache is full and a cache miss

t
occurs, some existing cache entry must be replaced with
he target reference. A good replacement algorithm is

-
c
necessary to achieve a satisfactory hit ratio. Choices in
lude a global LRU algorithm, LRU per process or user, or

e
first in first out. The delay due to removing the selected
ntry from the cache and bringing in the target reference

must also be minimized.

4. Directory reference measurementsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

e
d

A trace-driven simulation was used to investigat
irectory reference locality and evaluate different design

y
r
choices for the distributed directory cache. Director
eference strings were collected on each site of the 15 site

.
T
UCLA Vax Locus network for 10 hour periods for 6 days

hat network commonly supports more than 150 active
e

a
users during the five hour busy period of each day. Ther
re various organizations administrating subsets of the

-
l
machines; as a result, certain communities of users regular
y cross many machine boundaries, while other users’ ac-

tivity is primarily local.

An event trace was recorded each time the operat-
-

n
ing system referenced a directory component during path
ame expansion. Each event contained the name of the

f
w
directory reference, its file descriptor, an indication o

hether the directory was stored at the site that issued the
r

t
reference or at some remote site, an indication of whethe
he directory reference was found in the existing buffer

r
f
cache of the using site, the type of reference (for read o
or modification), a networkwide timestamp, plus other in-

w
formation. References to directories in which the directory

as the target file (e.g. directory listing commands) were
e

c
not recorded. Approximately 2 to 3 million entries wer
ollected per day.

The reference strings for each site were combined
-

c
and sorted by time. Locus contains an intersite time syn
hronization facility that keeps the clocks on all sites

-
t
within a few milliseconds of one another. Cache simula
ions were run on the combined, multisite reference string

.
T
so the caches on all sites were simulated simultaneously

he extent of directory sharing between sites and the effect

4

of multisite cache invalidation could thus be evaluated.

.1 Measurement resultsiiiiiiiiiiiiiiiiiiiii

The data which was collected showed differences

s
in certain measurements among sites, but for any given
ite, the measurements were quite stable.

-
m

For a given site, the percent of references for re
otely stored directories, the percent of references for

t
f
modification, and the percent of remote references no
ound locally, showed little variance during the 6 days of

-
e
measurements. For all sites, the percent of directory refer
nces for modification also varied little, with an average of

s
2.5% and a standard deviation of 0.5. The variance among
ites for the local versus remote values was more pro-

f
l
nounced because different sites support different mixes o
ocal and remote service. Although local directory refer-

f
ences were dominant on all sites, the percent of references
or remotely stored directories varied from 2.3% to 14.6%.

s
The percent of remote references not found at the using
ite varied from 20.2% to 83.2%. On sites where remote

p
traffic was mostly due to the activity of background
rocesses that kept directories open, this percentage was

-
t
low, but on sites where remote traffic supported normal in
eractive computing, the value was much higher.

s
f

Directory reference traces collected for 10 hour
or a single example site are shown in figure 2. As expect-

s
ed, most of the references are local (89%). However, a
ignificant portion (71%) of the remotely stored directory

e
e
pages must be brought across the network during pathnam
xpansion. The remaining references to remotely stored

y
o
directories are references to directories that are currentl
pen locally and are therefore found in the buffer cache

e
i
("incore") of the using site. The goal of a directory cach
s to increase the number of remotely stored directory

r
o
pages that are found incore at the using site. The numbe
f directory references that are requests for modification is

t
e
quite low (1.3%) but single site measurements are no
nough to determine the amount of directory sharing when

-
d
modification is requested. The results from the trace
riven simulation using the combined data from all sites is

needed to determine the overhead of multicache invalida-
tion.

iii
i Referencesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i Total Local Remoteii

%

of references 354491 317199 37292

of references 100.0 89.48 10.52

9

%

% for mod 1.27 1.07 2.9

not incore 17.41 11.12 70.87

i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2: Results of Directory Reference
Event Collection

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiig4.2 Locality in Directory Referencin

The property of "locality of reference" has been
sobserved in program execution , file access , as well a4,5 6

d 7atabase access . We are interested in the degree to which
d

i
locality is also exhibited by operating system functions an
n name to object translation in particular. The operating

-
t
system constantly searches for information (e.g. the transla
ion from string name to object) and then discards this in-

i
formation when in fact, the information may be used again
n the near future. If locality exists, caching recently used

g
s
information is likely to reduce the overhead of operatin
ystem management.

A measure of the locality present in a reference
string is given by Rodrigiuez-Rosell and used by Kearns8 7

to demonstrate locality in database reference strings:

L(t,τ) = w(t,τ)/τ

y
m
where L(t,τ) is interpreted as the instantaneous localit

easure at time t. This measure can be applied to directo-

τ

ry reference strings by setting:

= window size in # of directory references
τw(t,τ) = working set size at time t for window

= the # of distinct directories referenced

d
among the τ most recently referenced
irectories in the reference string

e
a
Averaging L(t,τ) over the number of references gives th
verage locality L(τ)dddd for a given window size. A reference

-
c
string that exhibits little rereferencing and thus has poor lo
ality will have a value of L(τ)dddd near 1 over a wide range

aof window sizes. If there is substantial rereferencing in

p
reference string, then as the window size increases we ex-
ect L(τ)dddd to decrease rapidly as references are likely to be

s
found in the current working set so the average working
et size does not increase.

A plot of the average locality L(τ)dddd versus window
s

s
size for the example single site directory reference string i
hown in figure 3.

Figure 3: Average locality L(τ)dddd as a function of

T

window size τ for directory references

he sharp decrease in L(τ)dddd implies a significant level of lo-

c
cality in directory referencing and suggests that a directory
ache of reasonable size would be very beneficial. At a

t
window size of about 40, the curve flattens out, indicating
hat some small number of directories are never rerefer-

4

enced.

.3 Trace-driven simulation resultsiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

e
d

A trace-driven simulation was used to evaluat
irectory cache size, replacement algorithms, and the over-

m
head of maintaining multicache consistency. A plot of the

iss ratio versus cache size for a directory cache using a
.

T
global LRU replacement algorithm is shown in figure 4

he miss ratio is the probability of not finding a remotely
g

s
stored directory during pathname expansion at the usin
ite. The cache size is given in number of directory pages

-
g
with the assumption that each directory is stored on a sin
le page. The cache size would be slightly larger to sup-

o
port the small number of directories stored on more than
ne page. A cache size of just 15 directory pages for the

f
Locus site considered in figure 2 reduces the miss ratio
rom about 71% without a directory cache to just 11%.

w
Almost 95% of the remotely stored directory references

ill be found at the using site with a cache of 40 pages.

Figure 4: Miss ratio versus window size for

T

a directory cache

herefore, in most cases, the elapsed time to access remote

r
objects will be greatly reduced since 95% of all accesses to
emote objects will not include the overhead of pathname

p
expansion. The hit ratio for all sites with a cache of 40
ages varies from about 87% to 96%. Increasing the cache

s
s
size further does not appreciably improve the miss ratio a
ome small number of directory pages are never rerefer-

enced.

Instead of using a single, global cache at each
s

w
site, a cache could be dedicated to each user. Cache entrie

ould be replaced as each user cache filled up. Our meas-

v
urements show that the number of active user ids per site
aried from a few to over twenty. Users frequently exe-

-
c
cute processes remotely, especially on server sites, thus in
reasing the number of user ids per site. Results from the

r
(
trace-driven simulation show that although a cache per use
with a per user LRU replacement algorithm) uses a small-

-
b
er cache size per user to achieve the miss ratio of the glo
al cache, the total number of pages dedicated to the direc-

tory cache is substantially greater.

When a request for modification is received by the
a

c
storage site of a directory, the storage site must send
ache invalidation message to each site that currently has

-
e
the page in its cache. Both the number of directory refer
nces that require cache invalidation messages and the

-
s
number of sites that must receive cache invalidation mes
ages must be very low for the distributed cache to be

effective.

g
Data from the directory reference traces for a sin-

le day indicate that over a 10 hour period there were
.

R
2,474,407 total directory references issued by all sites

esults from the trace-driven simulation show that even if

o
each site provides a cache of 60 directory pages, only 1265
r 0.051% of the references require cache invalidation.

c
The distribution of the number of sites that need to be sent
ache invalidation messages for each reference that re-

o
quires cache invalidation is shown in figure 5 for a cache
f 60 pages. Only 93 references or .0038% of the total

v
number of references require more then a single cache in-
alidation message. Thus, the overhead of maintaining

-
l
multicache consistency is quite low and should not be cost
y even as the number of sites in the system grows sub-

stantially.

Figure 5: Distribution of # of sites that require cache

A

invalidation messages

plot of the miss ratio versus cache size for a
s

r
single site cache (without cache invalidation) and the mis
atio versus cache size for a distributed cache where cache

fi
invalidation is generated by the simulation, is shown in

gure 6. The slightly higher miss ratio of the cache invali-
r

m
dation plot is mostly due to counting all references fo

odification as misses (since they must be serviced by the

e
storage site) rather than from the removal of invalidated
ntries from the cache.

5. Operation of the Distributed Directory Cacheiii

s
a

Pathname expansion with a directory cache work
s follows. When a using site searches a remotely stored

y
p
directory during pathname expansion and the director
ages are not found in the directory cache at the using site,

Figure 6: Plot of miss ratio with and without cache

a

invalidation

"no open read" (NOR) request message is sent to the site
e

d
that stores the directory. The storage site returns the fil
escriptor (inode) and the first directory page to the using

.
T
site, which enters the items into the local directory cache

he storage site adds the using site to a list of all sites that

r
currently have that file open for NOR. Additional directo-
y pages are read by the using site as usual and stored in

d
f
the cache. Remotely stored directory pages are remove
rom the using site directory cache on an LRU basis.

e
r

When a cache miss forces a directory page to b
emoved from the cache, the storage site must remove the

e
t
using site from the NOR list for that directory. To reduc
he delay due to a cache miss, an explicit "removed from

e
s
cache" message of an NOR directory is not sent to th
torage site, but is instead piggybacked on the next open

"
message to that storage site. A table of the last few NOR
removed from cache" messages are kept for each storage

o
site to be sent with the next open message. If an overflow
f this table occurs before the next open message is sent, a

r
"removed from cache" message is dropped. Given the low
ate of cache invalidation, the overhead of sending an in-

d
validation request to a site that doesn’t actually have the
irectory in its cache should be minimal.

t
s

All opens for modification are sent to the site tha
tores the directory. When a request for modification is re-

s
ceived for a directory which has a non-null NOR list, the
torage site sends a message to each site in the list to in-

t
d
validate the file descriptor and pages associated with tha
irectory. After acknowledgement is received from all

.
A
sites, the storage site opens the directory for modification

fter the directory has been closed for modification, it can

be reopened NOR by other using sites.

6. Discussion and Future Workiiiiiiiiiiiiiiiiiiiiiiiiiii

e
c

The primary goal of the distributed name servic
ache discussed in this paper is the reduction in system

l
i
response time to users’ remote requests. A secondary goa
s to reduce overall network traffic, and the corresponding

-
e
system overhead that message sending and receiving gen
rates. The use of a distributed cache for Locus substan-

t
tially improves remote performance and reduces network
raffic, as expected. The degree to which overall system

f
r
performance is improved varies, depending on the level o
emote behavior actually taking place. Caching is opera-

t
tional in a Locus testbed used for systems research; at the
ime this paper was written, the implementation was being

s
u
prepared for production use. Available experience in it
se corresponds well to the results of reference string

analysis reported in this paper.

Elsewhere , the utility and feasibility of full tran-
s

9

parency, even in networks with much higher delay and
-

e
bandwidth limits than LANs, is discussed. It was conclud
d that transparency is quite attractive and feasible. The

p
distributed caching discussed in this paper is especially
romising in those internet systems, because of the obser-

-
i
vation that a substantial portion of network traffic is nam
ng related, and since great reduction of such traffic is

especially beneficial in internet environments.

While it is believed that the reference strings

p
which have been collected adequately represent typical use
atterns, nevertheless there are other environments which

o
need to be examined. One wishes to investigate a system
n which there is a different application mix; commercial

p
rather than engineering and scientific activities, for exam-
le. It would also be instructive to conduct similar studies

for systems other than Locus.

A workstation oriented network presents a
-

s
different situation, also. The network we considered con
isted of multiuser systems, with an average of approxi-

c
mately ten users being served per machine. An effective
ache size was of the order of 30 pages. In a single user

c
node, we expect that the desired cache size will be
orrespondingly smaller, perhaps just a few pages. The

e
s
reference strings will be reanalyzed to indicate what cach
izes may be appropriate in this case.

-
v

In summary, name service in the distributed en
ironment which was studied exhibited a high level of lo-

m
cality, with an exceptionally low level of conflict between

odification to directories at one site and their concurrent
use elsewhere in the network. Further, the implementation

effort to support the cache disciplines described in this pa-

n
per is not complex. Thus we conclude that a distributed
ame service cache can be implemented in a reasonable

d
manner, and it can have a substantial positive effect on
istributed system performance.

iiiiiiiiisReference

.

[

[1] M. Karels, private communication, 1984

2] B. Walker, G. Popek, B. English, C. Kline, G.
,

P
Thiel, "The LOCUS Distributed Operating System"

roceedings of the 9th ACM Symposium on

[

Operating System Principles, Oct., 1983.

3] A. Smith, "Cache Memories", Computing Surveys,

[

Vol. 14, No. 3, September 1982.

4] P. Denning, "On modeling program behavior" in
,

A
Proc. Spring Joint Computer Conference, vol. 40

FIPS Press, 1972, pp. 937-944.

-[5] A. Madison and A. Batson, "Characteristics of Pro
gram Localities", CACM, Vol. 19, No. 5, May

[

1976.

6] S. Majumdar, "Locality and File Referencing
,

U
Behavior: Principles and Applications", M.S. thesis

niversity of Saskatchewan, August 1984.

n[7] J. Kearns and S. DeFazio, "Locality of Reference i
Hierarchical Database Systems", IEEE Transactions

[

on Software Engineering, March 1983.

8] J. Rodriguez-Rosell, "Empirical Data Reference
,

N
Behavior in Data Base Systems", IEEE Computer

ovember 1976, pp. 9-13.

-[9] A. Sheltzer, "Network Transparency in an Internet
work Environment", Ph.D. Dissertation, Computer

A
Science Department, University of California, Los

ngeles, 1985.

